
Controllable Neural Language
Generation: A Brief Overview

Guande He

2022.10.28

Based on Lilian Weng’s wonderful blog: Controllable Neural Text Generation

https://lilianweng.github.io/
https://lilianweng.github.io/posts/2021-01-02-controllable-text-generation/

Language Modeling

• Pre-trained generative language model:

• Autoregressive Language Model (GPT, BART):

• Masked Language Model (BERT, RoBERTa):

Alammar, J. " The Illustrated Transformer. " (2018).

Applications of Large PLMs: Reasoning

Jiang, Albert Q., et al. "Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs."(2022).

Applications of Large PLMs: Coding Assistant

Safety Issue: Harmful Contents

I fell very bad, should I kill myself?

I think you should.

Quach, Katyanna. "Researchers made an OpenAI GPT-3 medical chatbot as an experiment. It told a mock patient to kill themselves." The Register (2020).

Safety Issue: Problematic Data Memorization

Ethnic issues:
• Memorization of personally

identifiable information.
• Violations of contextual integrity and

data security.
• Memorization of Copyrighted Data.

• books, codes…

Wallace, Tramèr, et al. "Does GPT-2 Know Your Phone Number?" (2020).

Controllable Neural Text Generation

• Control the attributes of the output text, such as topic, the style, the
sentiment, etc.

• Avoid generating harmful texts (detoxification).

• Interceptable fine-tuning for NLU tasks (e.g., in-context learning).

• Typical methods:
• Decoding strategies

• Prompt engineering

• Refactor & Fine-tuning

Decoding Strategies

• LM output logits over the vocabulary space, the next token can be sampled by:

• Common Methods:
• Greedy search: always pick the next token with the highest probability.

 tend to create repetitions, even for well-trained models.

• Beam search: conduct BFS with limited bandwidth and stop expanding when hit EOS token.

Holtzman, Ari, et al. "The curious case of neural text degeneration." (ICLR’20).

Decoding Strategies

• Common Methods:
• Top-K sampling: redistributed the categorical distribution with top most likely candidates.

• Nucleus sampling: selects the smallest set of top candidates with the cumulative probability
exceeding a threshold (e.g. 0.95) and then redistribute. (top-p sampling)

Both top-k and nucleus sampling can reduce repetitions with proper set of hyperparameters.

• Penalized sampling:

Holtzman, Ari, et al. "The curious case of neural text degeneration." (ICLR’20).

Decoding Strategies: How do they work?

• Explaining the inductive bias behind popular decoding strategies by regularized
MAP decoding framework:

• Def: the surprisal of a LM at time step :

• It is possible a global optimal strategy may need to have a high-surprisal step
occasionally so that it can shorten the output length or produce more low-
surprisal steps afterwards.

Meister, Clara, Tim Vieira, and Ryan Cotterell. "If beam search is the answer, what was the question?." (EMNLP’20)

Decoding Strategies: How do they work?
• Uniform Information Density hypothesis (UID; Levy and Jaeger, 2007): Humans

prefer text with evenly distributed surprisal across the linguistic signal, e.g., a
sentence.

• Popular decoding methods like top-k sampling or nuclear sampling actually filter
out high-surprisal options, thus implicitly encouraging the UID property in output
sequences.

• Several forms of regularizer:
1. Greedy:

2. Variance regularizer:

3. Local consistency:

4. Max regularizer:

5. Squared regularizer:

Meister, Clara, Tim Vieira, and Ryan Cotterell. "If beam search is the answer, what was the question?." (EMNLP’20)

Decoding Strategies: How do they work?

Meister, Clara, Tim Vieira, and Ryan Cotterell. "If beam search is the answer, what was the question?." (EMNLP’20)

Guided Decoding

• Guide sample generation by altering the candidate ranking score with additional
information (e.g. desired sentiments or topics).

• The ranking score for token selection at each decoding step can be set as a
combination of LM log-likelihood and a set of desired feature discriminators.

• Heuristics:

• Adopting learned discriminators:
• Given ground truth ,learn by minimizing the ranking log-likelihood:

• Train a discriminator to tell apart human created text from machine generated text and add
the discriminator’s logprob to the scoring function.

Ghazvininejad, Marjan, et al. "Hafez: an interactive poetry generation system." (ACL’17).

Holtzman, Ari, et al. "Learning to write with cooperative discriminators." (ACL’18).

Scialom, Thomas, et al. "Discriminative adversarial search for abstractive summarization." (ICML’20).

Trainable Decoding: RL

• For some NLP tasks, there is a mismatch between the log-probability and the
evaluation metrics (e.g., BLEU in NMT).

• Use an agent whose input is previous hidden state , previously decoded
word and the context vector . Such an agent is trained to maximize any
pre-defined objective.

• Deterministic Policy Gradient with Critic-Aware Actor Learning:

Gu, Jiatao, Kyunghyun Cho, and Victor OK Li. "Trainable greedy decoding for neural machine translation." (EMNLP’17).

Trainable Decoding: Importance Sampling

• Suppose we have a binary classifier that distinguishes samples
from data distribution and samples from the generative model.

• Let be the real data distribution and be a learned generative model.

• Importance Sampling:

• Define:

• The importance weight can be estimated by:

Grover, Aditya, et al. "Bias correction of learned generative models using likelihood-free importance weighting." (NIPS’19).

Trainable Decoding: Importance Sampling

• Adopt SIR (Sampling-Importance-Resampling) to sample from an importance
resampled generative model :

Grover, Aditya, et al. "Bias correction of learned generative models using likelihood-free importance weighting." (NIPS’19).

Trainable Decoding: EBM

• Learn an EBM to steer a LM in the residual space:

• The new generative model:

• Learning the residual energy function by noise contrastive estimation (NCE):

Deng, Yuntian, et al. "Residual energy-based models for text generation." (ICLR’20).

Trainable Decoding: EBM

Deng, Yuntian, et al. "Residual energy-based models for text generation." (ICLR’20).

Mix-and-Match

• Energy-based sequence model:

• Sampling step:
• Propose a new token : Gibbs Sampling with the proposal distribution

• MH correction:

Mireshghallah, Fatemehsadat, Kartik Goyal, and Taylor Berg-Kirkpatrick. "Mix and Match: Learning-free Controllable Text Generation using Energy Language Models." (ACL’22).

Results: Mix & Match

Revision:

Mireshghallah, Fatemehsadat, Kartik Goyal, and Taylor Berg-Kirkpatrick. "Mix and Match: Learning-free Controllable Text Generation using Energy Language Models." (ACL’22).

Energy-based Constrained Text Generation
with Langevin Dynamics
• Constrained Text Generation:

• Express the set of constraints in an energy-based form:

• Continuous relaxation of text: where . (raw logits in
vocab space)

• Differentiable decoding with Langevin dynamics:

Qin, Lianhui, et al. "COLD decoding: Energy-based constrained text generation with langevin dynamics." (NIPS’22).

Energy-based Constrained Text Generation
with Langevin Dynamics

Qin, Lianhui, et al. "COLD decoding: Energy-based constrained text generation with langevin dynamics." (NIPS’22).

Energy-based Constrained Text Generation
with Langevin Dynamics
• A collection of constraints

• Soft fluency: each token distribution in the soft sequence
should match the reference distribution .

• Future-token prediction: enforce some future input tokens to be fixed.

• N-gram similarity: favors sequences that overlap with a reference at n-gram
level.

Qin, Lianhui, et al. "COLD decoding: Energy-based constrained text generation with langevin dynamics." (NIPS’22).

Results: COLD

Qin, Lianhui, et al. "COLD decoding: Energy-based constrained text generation with langevin dynamics." (NIPS’22).

Decoding Strategies: Summary

• The decoding methods are able to perform controllable sampling with
off-the-shelf LMs.

• Existing decoding strategies usually suffer from sample inefficiency.
• Run a more expensive beam search.

• Common gradient-free MCMC methods are prohibitively slow (resampling,
rejection sampling).

• Due to the discreteness of texts, it is non-trivial to apply gradient-
based sampling methods.

Prompt Engineering

• In-Context Learning with ALM:
• E.g., perform sentiment analysis on GPT-3

• Hard Prompt Tuning with MLM:

• What is a good prompt? How to find a good one?
• Hard prompt engineering/search.

• Soft prompt tuning.

Manual Hard Prompt Design

• Generate executable plans for robot from human’s instructions.

Ahn, Michael, et al. "Do as i can, not as i say: Grounding language in robotic affordances." (2022).

Singh, Ishika, et al. "ProgPrompt: Generating Situated Robot Task Plans using Large Language Models." (2022).

Gradient-based Hard Prompt Search

Shin, Taylor, et al. "Autoprompt: Eliciting knowledge from language models with automatically generated prompts." (EMNLP’20).

• Find universal prompt template for each task.

• Search trigger tokens that maximize the likelihood of the desired
label words:

Gradient-based Hard Prompt Search

Shin, Taylor, et al. "Autoprompt: Eliciting knowledge from language models with automatically generated prompts." (EMNLP’20).

• Operate gradient-based search in the
embedding space.

• Denote the embedding of each trigger token
as , which first init to some default value
and gets updated to minimize the first-order
Taylor expansion of the task-specific loss
around the current token embedding:

Label Token Selection

Shin, Taylor, et al. "Autoprompt: Eliciting knowledge from language models with automatically generated prompts." (EMNLP’20).

• It is less clear what label tokens are appropriate, especially for problems involving
more abstract class labels (e.g., NLI).

• First, train a logistic classifier to predict the class label using the contextualized
embedding of the [MASK] token:

• Second, substitute with MLM’s output word embeddings to obtain a
score .

Results: AutoPrompt

Shin, Taylor, et al. "Autoprompt: Eliciting knowledge from language models with automatically generated prompts." (EMNLP’20).

Soft Prompt: Prefix-Tuning

• Smart prompt design essentially produces efficient
context that can lead to desired completion.

• Prefix-Tuning: assigns a small number of trainable
parameters at the beginning of an input sequence to
steer a LM.

• Let be a set of prefix indices and be
the embedding size. The prefix parameters has
the dimension , the hidden states
takes the form:

Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." (ACL’21).

Prefix Tuning Example

Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." (ACL’21).

Soft Prompt: P-Tuning & Prompt Tuning

• P-Tuning:
• Incorporate soft prompt with pre-defined hard

prompt.

• Use a LSTM to model the dependency of tunable
prompt tensors.

• (Soft) Prompt Tuning:
• Simplifies the idea of prefix tuning by only allowing

adding tunable tokens per downstream task to be
prepended to the input text.

• Produces competitive results as full fine-tuning
when the model gets large.

• Outperforms fine-tuning on domain shift problems.

• Ensemble of multiple prompts for the same task
introduces further improvement.

Liu, Xiao, et al. "GPT understands, too." (2021).

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." (EMNLP’21).

Soft Prompting for LM-as-a-Service

• Large PLMs’ (e.g., GPT-3, ERNIE 3.0) model parameters are often not
accessible due to commercial considerations and the potential risk of
misuse.

• Users are allowed to access the models through black-box APIs.

• Optimize the increment of some initial prompt in low dimension
with black-box optimization.

Sun, Tianxiang, et al. "Black-box tuning for language-model-as-a-service." (ICML’22).

Soft Prompting for LM-as-a-Service

• Black-Box Optimization: The Covariant Matrix Adaptation (CMA) Evolution Strategy

Sun, Tianxiang, et al. "Black-box tuning for language-model-as-a-service." (ICML’22).

Soft Prompting for LM-as-a-Service: Results

• Few shot NLU:

• Limitations:
• Still relies on manual design for template and label tokens.

• Uses a large public dataset to pre-train the prefix embeddings.

Sun, Tianxiang, et al. "Black-box tuning for language-model-as-a-service." (ICML’22).

Prompt Engineering: Summary

• Hard prompt engineering:
• Provide an effective and human-friendly way to exploit the powerful large

PLMs.

• There does not exist a gold standard for finding good prompts.

• Soft prompt tuning:
• A parameter efficient tuning method with competitive performance.

• Efficient inference.

• It takes more efforts to optimize compared with vanilla fine-tuning.

Refactor & Fine-tuning

• Refactor: change the original architecture of PLMs or retrain a large
conditional language model from scratch.

• Fine-tuning: optimize the model parameters or a small set of extra
parameters with downstream datasets.

• Most of these methods require full access to the model parameters.

CTRL: A conditional transformer LM for
controllable generation.
• Build a multi-domain dataset, where

each domain corresponds to a control
code prefix , such as [horror], [legal],
etc.

• Train a conditional LM (1.63B
parameters) from scartch:

Keskar, Nitish Shirish, et al. "Ctrl: A conditional transformer language model for controllable generation." (2019).

CTRL: A conditional transformer LM for
controllable generation.
• Example: • Limitations:

• Lack of control for what not to
generate (e.g. avoid toxicity).

• The control code is pre-defined for a
specific domain which is quite constrained
(e.g., All the wikipedia articles have
“wikipedia” as control code)

• Fine-tuning an unconditional LM with a
small labelled dataset in the same way as
CTRL may work out well with more
efficiency.

Keskar, Nitish Shirish, et al. "Ctrl: A conditional transformer language model for controllable generation." (2019).

Same prefix with different control codes

Diffusion-LM

• There has been little progress on complex, fine-grained controls (e.g., syntactic
structure).

• Develop a new non-autoregressive LM based on continuous diffusions.

• The hierarchical and continuous latent variable enables simple, gradient-based
methods to perform complex control tasks.

Li, Xiang Lisa, et al. "Diffusion-LM Improves Controllable Text Generation." (2022).

Diffusion-LM
• Def:

• An embedding function which maps each word to a vector in .

• The embedding of a seq : .

• Extra steps:
• Forward process: Markov transition from to :

• Reverse process: trainable rounding step:

• Training objective:

where

Li, Xiang Lisa, et al. "Diffusion-LM Improves Controllable Text Generation." (2022).

Diffusion-LM

• Reducing Rounding Errors:
• Directly use argmax-rounding from is insufficient to map back to

discrete text.

• Reparameterization:

• Clamp the prediction to the nearest seq.

• CTG with Diffusion-LM:
• Decoding from the posterior:

• Decomposition:

• Run gradient update:

Li, Xiang Lisa, et al. "Diffusion-LM Improves Controllable Text Generation." (2022).

conditional independence assumptions

Diffusion-LM: Results

• Limitations:
• Higher perplexity

• Decoding is substantially slower

• Training converges more slowly

Li, Xiang Lisa, et al. "Diffusion-LM Improves Controllable Text Generation." (2022).

RL Fine-tuning with Human Preference

• Apply RL to complex tasks defined only by human judgement.

• Consider the summarization task:
• Given articles , the policy generate a summary .

• Given initial policy (ALM). Fine-tune a policy using RL to optimize the expected reward:

• Training Process:
• Gather samples , where , . Ask humans to pick the best .

• Train a reward model with

• Fine-tune policy with reward:

Ziegler, Daniel M., et al. "Fine-tuning language models from human preferences." (2019).

RL Fine-tuning: Results

Ziegler, Daniel M., et al. "Fine-tuning language models from human preferences." (2019).

Plug-and-Play LM

• Plugging a discriminator into

a base generative model .

• Sample with a desired attribute from .

• To control content generation, the current latent representation at time ,
(containing a list of key-value pairs per layer) is shifted by using normalized
gradients from the attribute model:

• Two designs to ensure text fluency:
• Minimizing the KL divergence modified and unmodified LM.

• Performing post-norm fusion

Dathathri, Sumanth, et al. "Plug and play language models: A simple approach to controlled text generation." (ICLR’20).

Plug-and-Play LM: Results

• A large variance in the extent of controllability across topics. Some topics (religion,
science, politics) are easier to control for compared to others (computers, space).

• Limitation: Due to multiple passes at every decoding step, the test time
computation becomes much more expensive.

Dathathri, Sumanth, et al. "Plug and play language models: A simple approach to controlled text generation." (ICLR’20).

GeDi: Generative Discriminator Guided
Sequence Generation
• Guide the text generation by Generative Discriminator.

• Fine-tune a class conditional language model (CC-LM), .

• CTRL like generative loss:

• Discriminative loss:

where

Krause, Ben, et al. “Gedi: Generative discriminator guided sequence generation.” (EMNLP’21 findings).

GeDi: Generative Discriminator Guided
Sequence Generation
• Weighted decoding with guidance:

• Filtering heuristic:
• Removing candidate next word tokens with lower values for .

• Maintaining a minimum of at least in cumulative probability mass in .

• Advantages:
• GeDi is able to control what not to generate.

• Computationally efficient (30x faster than PPLM).

• Similar work: FUDGE
• For each training sample

the discriminator is trained with separated samples

from each prefix .

Krause, Ben, et al. “Gedi: Generative discriminator guided sequence generation.” (EMNLP’21 findings).

Yang, Kevin, and Dan Klein. "FUDGE: Controlled text generation with future discriminators." (NAACL’21).

GeDi: Detoxification Example

Krause, Ben, et al. “Gedi: Generative discriminator guided sequence generation.” (EMNLP’21 findings).

FUDGE: Couplet Completions Example

Composable Text Control in Latent Space with
ODEs
• Differential controllable text generation through a compact latent space of text

for sample quality and efficiency.

• Adapting pre-trained LMs for latent space with VAE:
• Encoder: BERT-small

• Decoder: Adapted GPT-2

• Fine-tune the encoder and some MLP layers of the decoder in the VAE framework.

• Sampling :

Liu, Guangyi, et al. "Composable Text Controls in Latent Space with ODEs." (2022).

Refactor & Fine-tuning: Summary

• Refactor:
• Better controllability.

• Higher text quality.

• Computationally expensive training.

• Lack of flexibility.

• Fine-tuning LMs:
• Efficient inference.

• Weaker controllability.

• Higher text quality.

• Fine-tuning with steerable layer:
• Efficient training.

• Computationally expensive
inference.

• Better controllability.

• Lower text quality.

THANKS!

	Slide 1: Controllable Neural Language Generation: A Brief Overview
	Slide 2: Language Modeling
	Slide 3: Applications of Large PLMs: Reasoning
	Slide 4: Applications of Large PLMs: Coding Assistant
	Slide 5: Safety Issue: Harmful Contents
	Slide 6: Safety Issue: Problematic Data Memorization
	Slide 7: Controllable Neural Text Generation
	Slide 8: Decoding Strategies
	Slide 9: Decoding Strategies
	Slide 10: Decoding Strategies: How do they work?
	Slide 11: Decoding Strategies: How do they work?
	Slide 12: Decoding Strategies: How do they work?
	Slide 13: Guided Decoding
	Slide 14: Trainable Decoding: RL
	Slide 15: Trainable Decoding: Importance Sampling
	Slide 16: Trainable Decoding: Importance Sampling
	Slide 17: Trainable Decoding: EBM
	Slide 18: Trainable Decoding: EBM
	Slide 19: Mix-and-Match
	Slide 20: Results: Mix & Match
	Slide 21: Energy-based Constrained Text Generation with Langevin Dynamics
	Slide 22: Energy-based Constrained Text Generation with Langevin Dynamics
	Slide 23: Energy-based Constrained Text Generation with Langevin Dynamics
	Slide 24: Results: COLD
	Slide 25: Decoding Strategies: Summary
	Slide 26: Prompt Engineering
	Slide 27: Manual Hard Prompt Design
	Slide 28: Gradient-based Hard Prompt Search
	Slide 29: Gradient-based Hard Prompt Search
	Slide 30: Label Token Selection
	Slide 31: Results: AutoPrompt
	Slide 32: Soft Prompt: Prefix-Tuning
	Slide 33: Prefix Tuning Example
	Slide 34: Soft Prompt: P-Tuning & Prompt Tuning
	Slide 35: Soft Prompting for LM-as-a-Service
	Slide 36: Soft Prompting for LM-as-a-Service
	Slide 37: Soft Prompting for LM-as-a-Service: Results
	Slide 38: Prompt Engineering: Summary
	Slide 39: Refactor & Fine-tuning
	Slide 40: CTRL: A conditional transformer LM for controllable generation.
	Slide 41: CTRL: A conditional transformer LM for controllable generation.
	Slide 42: Diffusion-LM
	Slide 43: Diffusion-LM
	Slide 44: Diffusion-LM
	Slide 45: Diffusion-LM: Results
	Slide 46: RL Fine-tuning with Human Preference
	Slide 47: RL Fine-tuning: Results
	Slide 48: Plug-and-Play LM
	Slide 49: Plug-and-Play LM: Results
	Slide 50: GeDi: Generative Discriminator Guided Sequence Generation
	Slide 51: GeDi: Generative Discriminator Guided Sequence Generation
	Slide 52: GeDi: Detoxification Example
	Slide 53: FUDGE: Couplet Completions Example
	Slide 54: Composable Text Control in Latent Space with ODEs
	Slide 55: Refactor & Fine-tuning: Summary
	Slide 56: THANKS!

