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Today’s Goal

* Get general pictures of downstream adaptation methods for
foundation models.
* Take pre-trained language models for example.

* Share some insightful research works on this topic.

* Mainly focus on a “black box treatment” of language models.

* From “l know it works” to ‘| have some idea on how/why it works” through
theoretical analysis under some simplified settings.

* Show some empirical evidence related to the theoretical analysis.



Composition of the Pile by Category

* Academic = Internet = Prose

Dialogue = Misc

Pre-trained Language Models

* Given text sequences & from large corpora X', we

can learn a language model Po by self-supervised
learning, which models some conditional e
probabilities:

Figure 1: Treemap of Pile components by effective size.

. . . “The Pile” Corpora (~1000GiB
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* Masked language modeling (BERT family):

Autoregressive Language Modeling

K
1
EMLM (9) — E E ].0g Po (xﬂ'k: ‘ r_T11 ) , Fandomu - A quick [MASK] fox jumps over the [MASK] dog

asked i ‘L
k=1 predict A quick brown fox jumps over the lazy dog '
where 11 = {m,.

.., 7K } is the mask indices.

Masked Language Modeling
Gao, Leo, et al. "The pile: An 800gb dataset of diverse text for language modeling." arXiv:2101.00027 (2020).

Amit, C. " Self Supervised Representation Learning in NLP. " (2020).



Downstream Adaption of PLMs

* In real-word scenarios, we might expect more than left-to-right completion po(z¢|T <)
or mask filling po(zr|T_1) .

* For example:

* Text classification:

Given a text sequence T , we want to identify a particular attributey € ) corresponds to ,
e.g., spam filter, sentiment analysis.

* Instruction following:

Given a user instruction I, we want the model to generate high-quality response y € ) that
maximizes an unobserved human reward function R : X x Y — R.

* Other applications:
information retrieval, summarization, controllable generation, etc.

* Intuitively, large language models have learned a rich set of linguistic features so it
should be easily adapted to downstream tasks



Downstream Adaption of PLMs
It works!

There are two mainstream ways to adapt PLMs on
downstream tasks:

Fine-tuning (In-Weight Learning):
* Gradient-based parameter updates.
* Learn or “remember” class information during fine-tuning.

In-Context Learning:

* No parameter updates.
* Learn with a concatenation of demonstrations.

It turns out that downstream adaptation of PLMs is
effective in terms of both quality and efficiency.

Why these adaptations could work on PLMs?

Rank Name Model

1 JDExplore d-team Vega v2
-+ 2 Liam Fedus ST-MoE-328

3 Microsoft Alexander v-team Turing NLR v5

4 ERNIE Team - Baidu ERNIE 3.0

5 YiTay PaLM 5408
e 6  Zirui Wang T5+ UDG, Single Model (Google Brain)
e 7 DeBERTa Team - Microsoft DeBERTa / TuringNLRv4

8 SuperGLUE Human Baselines SuperGLUE Human Baselines

Fine-tuned LMs outperform
human baseline in SuperGLUE
natural language understanding

benchmark
Demonstrations
Circulation revenue has increased by 5% in Finland. \n Positive
Panostaja did not disclose the purchase price. \n Neutral

Paying off the national debt will be extremely painful. \n Negative
The acquisition will have an immediate positive impact. \n
Test input {

—

Prediction = Positive

An example of in-context learning



Fine-tune a Pre-trained Masked Language Model
A rough picture on how fine-tuning works

* In the pre-training phase, the MLM first uses a transformer-based text encoder f
to get hidden representations g(x) of input sequence, then a language modeling
head is applied on g(x) to get the conditional probability pg (., | _11).

* In the fine-tuning phase, a newly initialized classification head is applied to
g(x) and is jointly optimized with the LM using downstream data (x, y) .

ﬁp Mask LM Mask LM \ M‘-' MAD Start/End Spam
* & L * oo

AR A o B
BERT P .......b BERT
Fea & ] [& ][ Eem][& .. [&] [eal & ] [ & [ Een][ & ].. [Er]
= L e W e i =
Toki | .. Tok N [SEF] m TokM m Toki | .. Tok N [SEF] Tok1 | ... Tokh
Masked Sentence A P Masked Sentence B Question ‘_ Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair
Pre-training Fine-Tuning

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding.” (2018).



Why PLMs Help in Downstream Task?

* We could get some insights about why fine-tuning a pre-trained MLM is effective
by analyzing a simplified setting:
* Downstream task: text classification.
* Fine-tuning methods: head tuning (optimize the classification head only).
* Data generating distribution: Hidden Markov Model.

* Definitions:

* Pre-trained Model. Assume our pre-trained masked language model could perfectly
compute the conditional probability G, (z) = p(z;|x_;) € A!Vl, which is a probability vector
over the vocabulary space ).

« Downstream Task. The downstream task contains paired data (z, F*(x)) € X x ), where
F*: X — ) is the ground-truth mapping and ) is a discrete set of labels.

* Head Tuning. Use a classification head f on top of fixed model outputs, e.g.,
F(x)=1(f(G(x)) > 0) for classification.

* Remark. In practice, the classifier is built on top of contextualized representations.

Wei, Colin, Sang Michael Xie, and Tengyu Ma. "Why do pretrained language models help in downstream tasks? an analysis of head and prompt tuning.” (NeurlPS 2021).



Review: Hidden Markov Model

* Hidden Markov Model (HMM) is a probabilistic graph model:

@6 :
@'®\@/
@ %@@o .\,’

* Joint probability: p(x, h) = p(ho) Hp (hilhi—1)p(xilhi) @

Conditional independence in Bayesian network

* Conditional independence: hi—1Lhiyi|hi, Zil@®ipr.olh;



Analysis with HMMs H H H
* Data distribution. Q @

T
. Joint probability: p(:l:, h) = p(ho) Hp(hzm’b—l)p(xlmz)
=1

* We have time-invariant transition probability for all timesteps ; > 0,

* We have time-invariant token emission probability for all timesteps; > 1,
ie. p(x;|h;) =W e RIVIXIH

* Downstream task.
* The ground-truth mapping is assumed to be a linear classifier on the posterior p(ho|x1.7):
F*(x) = 1(u" plhol) > 0)
* The downstream classifier is built on top of the conditional probability G;(x) = p(z;|x_;) :

F(z)=1(b"(G(x)) > 0)



Bridge the Gap between Conditional Prob & Posterior (I)

 Lemma I. If the Markov chain {hg, ..., hr} is ergodic and p(hg) has full
support, then for any timestep ¢t > 1, there exists a diagonal matrix D such that
for all sequence v € supp(p(x)),

p(hi|Tiy1:547 = V) = 1o Dp(ho|T1.7 = V)
where 7y is a positive scalar.

* Proof.

p(®iy1:74i = vlh) ©p(hy)
p(Tit1.74i = V)

_ p(@rr = vlho) ©p(ho) . p (h;)
P(Tiy1:741 = V) p (ho)

p(hi)  p(xir =)

p(ho) p(Tit1.74i=v)

p(hilTiy1.74i = V) =

(by Markovian property of HMMs)

= p (holx1.r =) ®



Bridge the Gap between Conditional Prob & Posterior (ll)

 Lemma 2. LetU, V, Z be random variables such that U L V' | Z .Then for any
v, PlU|V =v] = P|U|Z]- P|Z|V = v].Thus,if P|U|Z| has a left inverse
(P[U|Z]) T then P[Z|V =] = (P[U|Z)) P[U|V = .

Recall that in HMM, we have z; La;, 1.7 |h; ,apply Lemma 2, let ' = [z, v], then:

Gl (a:’) — p(ajllla?/QT — ’U) — Wp(h1|wl2T — ’U)
If the token emission probability matrix 11 has linearly independent columns, then:
p(hilzyy = v) = WG (2)
By Lemma |, we have:
p(hi|®s.r 1 = v) = ro Dp(hol@r.r = v)

Hence, we can recover the posterior-based ground-truth mapping using a linear
classification head on top of a conditional probability.



Beyond (Linear) Head Tuning and HMM

* Under above setting, the full column rank assumption on W & RIVIXIH implies
'H| < |V|, which is unrealistic because we usually adopt a large model to ensure

Its expressivity.

* This assumption can be further relaxed via:

* More flexible tuning methods, e.g., soft prompt tuning.
* More powerful data generating distribution, e.g., memory augmented HMM.

[xl, x2, P xt—l' xt
l embedding - _..
W e, e, ...eq, e _'@

& ®®

= soft prompt, . - _
- fake token l pretrained model G ( :; ) N - X, : / M, 31 M, ]t S,

. . )
P[Xi|x_1,2] --- P[X¢|x_(, 2] Task: predict " P(M|x,.+)

downstream task head % Task: predict T P(My|xy.¢)

* You can refer to the original paper for further analysis.



Empirical Evidence: Scaling Law of Soft Prompt Tuning

=®= Model Tuning =M= Prompt Design
Model Tuning (Multi-task) Prompt Tuning
100
90
o o/
o o
R 80
L
g 70 / /
[ |
@ /l-—_.../
60 ||
/.——./
50 u
108 10° 1010 101

Model Parameters

* Soft prompt tuning of T5 matches the quality of standard full parameter fine-
tuning as size increases.

Lester, Brian, Rami Al-Rfou, and Noah Constant. “The power of scale for parameter-efficient prompt tuning.” (EMNLP 2021).



Summary

* Pre-training on large-scale datasets with self-supervised learning enables efficient
and effective adaptation to downstream tasks.

* There exists some relationship between the self-supervised objective and the
performance on downstream tasks, which is seemingly unrelated.

* Further Reading:

* Closer look to relationship between pre-training loss and downstream performance:
Liu, Hong, et al. “Same pre-training loss, better downstream: Implicit bias matters for language
models.” (ICML 2023).



In-Context Learning
An intriguing phenomenon

* In-Context Learning (ICL) was popularized in the original GPT-3 paper as an
adaptation technique for larger language models to learn tasks given only a few
examples.

Circulation revenue has increased by 5% Circulation revenue has increased by
in Finland. // Positive 5% in Finland. // Finance

Panostaja did not disclose the purchase They defeated ... in the NFC

price. // Neutral Championship Game. // Sports
Paying off the national debt will be Apple ... development of in-house
extremely painful. / Negative chips. // Tech

The company anticipated its operating The company anticipated its operating
profittoimprove. // profit to improve. //

Brown, Tom, et al. "Language models are few-shot learners." (NeurlPS 2020).
Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).



The Mystery of In-Context Learning

* What can ICL do?

* On many NLP benchmarks, ICL is competitive with supervised learning using less
labeled data.

* ICL has enabled people to build new applications in just a few hours (prompt engineering).

* Why ICL surprising?
* ICL does not need any parameter updates.
* ICL just emerges from large PLMs, where the model did not explicitly learn with such pattern.

* What the model does when conducting ICL?
* Indexing into a vast set of known tasks from the training data?
* Learning new tasks from in-context examples at inference time!?

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning” (2022).



A Framework for ICL as Bayesian Inference

1. Pretraining documents

e oo Albert Einstein was a German theoretical physicist, widely
o e ComfePt_ _, acknowledged to be one of the greatest physicists of all time.

! ncept (e.g., (e.g., wiki bio) Einstein is best known for developing the theory of relativity, but
biographical text) he also

2. Create independent
examples from a shared

Input (x) Output(y)  Delimiter

/ Albert Einstein was German \n

concept. If we focus on full c :
names, wiki bios tend to oncep . .
relate them to nationalities. (e.g., wiki bio) / — > Mahatma Gandhi was el |

. . ..brilliant?
\ Marie Curie was ?

...Polish?

3. Concatenate examples into a prompt and predict next word(s). Language model (LM) implicitly
infers the shared concept across examples despite the unnatural concatenation

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curie was =—»| LM |=—>  Polish

* If the LM fits the pretraining distribution with enough data and expressivity, the question of
ICL becomes matching p(output|prompt) under pretraining distribution and a different
distribution Pprompt via marginalization:

p(output|prompt) = /

concept

p(output|concept, prompt)p(concept|prompt)d(concept)

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Formalizing ICL

* Pretraining distribution.
* A latent concept (task) 6 from a family of concepts © defines a distribution p (o1, ..., or|0)
over observed tokens 0 from a vocabularyV .
* Document generation:
« Sample 6 ~ p(0).
* Generate the document by p (01, ...,07|0) ,which is defined by a HMM.The concept 6

determines the transition probability matrix of HMM between h1, ..., hr from a hidden state set H.
* Pretraining: p(o1,...,0r) = / p(o1,...,or|0)p(0)dd
0eO

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Formalizing ICL

* In-Context Prompts.

* A prompt example composes an input sequence x and an output tokeny.

* The prompts is a concatenation of n independent training examples and a test input Ttest,
which are all conditioned on a shared prompt concept §*.The goal is to predict Ytest .
* Prompt generation:
 Generate a start hidden state A;**"* from a prompt start distribution Pprompt.

* Given h"™", generate the example sequence O; = [x;, y;] from the
p(O;|hE¥, %) conditioned on §*.

* A special delimiter token 09°"™ is used to split these examples.
* The prompt can be written as:

delim delim delim
[Snamtest] — [mlayhO y L2,Y2,0 yeroyLnyYn, O y Ltest ] ~ Pprompt

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Formalizing ICL

* There exists a mismatch between prompt and pretraining distributions:

* The transition between |ICL examples has low probability in the pretraining distribution.

e The choice of 0™ can also be a source of mismatch.

00D low-prob transitions
between examples

nn NN

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curie was

In-distribution transitions
reveal information about 8*

* Under such mismatch, LLMs can correctly infer the prompt concept from examples.

* GroundTruth:
_ start p*
Ytest ™~ Pprompt (y|wtest ) — EhStarthprompt(hStart | Ttest ) [p (ylwtesta htest 79 )]

test test

* In-Context predictor:  f, (z4est) = arg maxy p (y|Sn, Trest)

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
High-level Approach

* Our goal is to show argmaxp (y|Sy, Trest) — arg Max pprompt (Y| Trest) aS 1 grows.
Yy Yy

* Expanding p (y|Sn; Ttest)

p(y|Sn7mtest) — /p(ySnywtestae)p(msnawtest)de
0

1
X /p (Y| Sns Tiest, 0) P (Sn, Trest |0) p(6)dO ( Bayes’ rule, drop the constant )
0 p (Sn7 mtest)

Shy Test|0)
o hstart 0 hstart Sn o 0 p( n, Ltest 0)do
X /thtazr;e%p (ylmt ty 'test )p( test ‘ y Ltest ) D (Snawtestw*)p( )

(Law of total prob, Markov property, divide by p (Sy, Ttest|0") (a constant))

= / Z D (Y|®test, hioa '+ 0) D (hicat" [Sns Ttest, 0) exp (n - 7,,(0)) p(0)do
O nytarten
1 p (Sna "Etestle)

n(0) = —1 .
where mnl0) = 8 (S e 67

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
High-level Approach

GO&I: arg m??Xp (y‘Sna xtest) — arg m??prrompt (y‘wtest>

Expanding p (y[Sn, @test):

P(Y|Sn, Trest) o [ S potart ez D (Y] Trest, BEELE 0) p (RSETY|S,, @ pegr, 0) LSmBrest B) ) g

test P(Sn,@test|0")
P(Sn,Ttest |0 N
If p((smxt;:,g*)) > U for all concepts § except the prompt concept 6% then the

prompt concept 9* is “selected” as a consequence of Bayesian inference.

* New goal:
1

* Concept selection:show the average likelihood ratior, (0) = - log pp((ssn”;:ijﬁ)) converges to a
negative constant for all 6 # 0.

 Same prediction under §*:

start * start *
arg max E p (y|wtest7 htest ) 0 ) p<htest Sn7 Ltest 0 ) — argmax Pprompt (y|wtest)
y star y
htgsttEH

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Heuristic derivation

* A main technical challenge in this setting is:
* First, the in-context examples O; = [x;, y;] are iid.
* However, they are dependent w.r.t. the pretraining distribution in ICL.

* Under some assumptions on bounded P(%:est/Sn, 8) and p(h*"™|6), we can perform
factorization with constant error per sample: n

p (Sna wtest‘g) — P (wtest‘sna e)p (Sn‘g) ~ H O<1)p (Ozle)
* Then: =1

1 & p(0;]0) p(0|0)
rn(e) S 5 <O<n> + ;log p(Ozw*)) — O(l) + EONpprompt llog p(Ow*)]

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Heuristic derivation

1 " p(0;]0) p(019)
* From () <5 (OW 2l p(0@-|9*>> = O+ Bovsns llog p(OIH*)]

* The expectation can be decomposed to two KL terms:

p(0l0) ]
p(O|6*)

= DKL (Pprompt (0)[[P(067)) — Dxr (Pprompt (0)|p(010))

TV TV

O(1) error term KL term

* When KL term > Error term for all§ # 0, we will get ]i(s‘g”;itej‘e@) > 0.

EONpprompt llog

* The prompt should provide enough signal (distinguishability) for Bayesian
inference.

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Heuristic derivation

* Last piece:

argmax Z p (y’mtesta higg‘ita 0*) p(hﬁg{t |Sn7 Ltest H*> — argmax Pprompt (y|wtest)
Yy Yy
hiterteH

* Expanding Pprompt (¥|Ttest):
pprompt ('y’wtest) — Z p (y’wtesta higslzt: 0*> pprompt(higzngtest)
hiat e
o > P (Ylmrest, M3, 07) P(@est| 3", 07 ) Pprompt (Biet)
Expanding LHS R
¢ £Xpandin .
P g LHS = Z p (y|$testa hié??? ‘9*) p(h?e:&stil;wsna Ltest 9*)
Byt M
5 Y D (Ylrest, K3, 07) p(Trest [P, 07 )p (RIS, 67)
hstart 67‘[

test

. tart tart .
* Same argmax when the difference between Pprompt (7icsi ) and P(Piese S0, 07) is moderate.

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



Summary

* In-context examples provide noisy evidence for Bayesian inference.

* The input distribution, label distribution and input-output mapping all provide signal for
Bayesian inference.

* |CL is robust to some noise.

* With a strong signal, some forms of noise (e.g., low-prob transitions between examples,
removed input-output mapping) could be tolerable.

Circulation revenue has increased by 5% in Finland. // Finance
They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning” (2022).



Empirical Evidence: Investigating ICLs Components

* Typical in-context examples consists of 4 components:

Input distribution Output space
I Circulation revenue has increased by 5% in Finland. \n Positive I
| Panostaja did not disclose the purchase price. \n Neutral | Format

| Paying off the national debt will be extremely painful. \n Negative |

Input-output mapping

* Examine the role of input-output mapping by:
e Zero-Shot learning
* Examples with ground-truth outputs
* Examples with random outputs

Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." (EMNLP 2022).



Effect of Input-Output Mapping

* Results of models whose sizes range from 774M to 175B

50 Classification
1 No Demos Demos w/ gold labels #% Demos w/ random labels
55+
~ 50+
g
; 45
g 401
)
E 35<
25
Direct Direct Channel
GP’I’Z GPTZ MetalCL MetaICL GPTJ falrseq 6 7B falrseq 6 'IB falrseq 13B falrseq 13B GPT-3 GPT-3
70 Multi-choice
o5 i No Demos Demos w/ gold labels % Demos w/ random labels
~60
=
55
]
550
o
Q
<45
» Direct Channel Direct Channel Direct Channel Direct Channel Channel Direct Channel
GPT-2 GPT-2 MetalCL MetalCL GPT] GPTJ fairseq 6.7B  fairseq 6.7B  fai rseq 13B fairseq 13B

* Correct input-output mapping has a marginal effect on ICL (with implications).

Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." (EMNLP 2022).



Effect of Input and Label Space

* The input distribution and the label space of in-context examples matter.

Colour-printed lithograph. Very good condition. \n Neutral Circulation revenue has increased by 5% in Finland. \n Unanimity
Many accompanying marketing ... meaning. \n Negative Panostaja did not disclose the purchase price. \n Wave
In case you are interested in learning more about ... \n Positive

Paying off the national debt will be extremely painful. \n Guana
The company anticipated its operating profit to improve. \n
*Randomly Sampled from CC News :

m | *Random English unigrams

Newral newral ST

Replace the prompt input with random Replace the prompt label with random
inputs from an external corpus English unigrams

The company anticipated its operating profit to improve. \n

* Both changes can lead to a significant performance drop.

Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." (EMNLP 2022).



A Framework for ICL as Bayesian Inference

Signal for Bayesian inference

Input distribution Output space
| Circulation revenue has increased by 5% in Finland. \n  Neutral |
| Panostaja did not disclose the purchase price. \n Negative J Format

| Paying off the national debt will be extremely painful. \n Positive |

Input-@m@ppmg

Random outputs add noise,
but doesn’t remove all signals
for Bayesian inference

* |s the story ends!?

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning” (2022).



Different Story for Larger LMs

* To successfully perform ICL, models can

* Mostly use semantic prior knowledge to predict labels while following the format of in-
context examples

* Learn the input-label mappings from examples (overriding semantic prior or only exploit the
input-output mapping).
* Study how semantic priors and input-label mappings interact in several
experimental settings.

Regular ICL I Flipped-Label ICL I SuL-IcL
Natural language targets: | Flipped natural language targets: | Semantically-unrelated targets:
{Positive/Negative} sentiment I {Negative/Positive} sentiment I {Foo/Bar}, {Apple/Orange}, {A/B}
Contains no wit[...] \n  Negative ] | Contains nowit].. ] \n Positive | Contains no wit [...] \n Foo
Very good viewing [...] \n  Positive Very good viewing [...] \n Negative Very good viewing [...] \n Bar
A smile on your face \n A smile on your face \n A smile on your face \n
I I
Language | Language | Language
Model I Model I Model
Positive | Negative | Bar

Wei, Jerry, et al. "Larger language models do in-context learning differently.” arXiv preprint arXiv:2303.03846 (2023).



Experiment Setting

Tasks: standard NLP classification datasets

Models: ranging 350M ~ 540B, w/ and w/o instruct tuning.

Use |6 context examples for each dataset.

Use 100 randomly sampled evaluation examples per dataset.

Model Family | Model Name (Abbreviation)
GPT-3 | ada (a), babbage (b), curie (c), davinci (d)

text-ada-001 (a-1), text-babbage-001 (b-1),
InstructGPT text-curie-001 (c-1), text-davinci-001 (d-1),
text-davinci-002 (d-2)

code-cushman-001 (c-c-1), code-davinci-001

Codex (c-d-1), code-davinci-002 (c-d-2)
PalLM | PaLM-8B, PaLM-62B, PaLM-540B
Flan-PalL M-8B, Flan-PaLM-62B, Flan-
Flan-PalLM Pal.M-540B

Table 1: Models used in this paper.

Wei, Jerry, et al. "Larger language models do in-context learning differently.” arXiv preprint arXiv:2303.03846 (2023).



Input-Label Mapping Override Semantic Priors in LLMs

100

Accuracy (%)
N B O 0
o o o S O

0 25 50 75 100
% flipped labels
—4— PalLM-540B
PalLM-62B
PalLM-8B
Random

——

——

——

Codex

0 25 50 75 100
% flipped labels

code-davinci-001

Random

100
80
60
40
20

0

code-cushman-001

InstructGPT

0 25 50 75 100
% flipped labels

code-davinci-002 —+— text-davinci-002

text-davinci-001
text-curie-001

text-babbage-001

text-ada-001
Random

0 25 50 75 100
% flipped labels

—%— davinci

curie
babbage
ada
Random

. S

Wei, Jerry, et al. "Larger language models do in-context learning differently.” arXiv preprint arXiv:2303.03846 (2023).




|CL with Semantically Unrelated Labels Emerges with Scale

PalLlM Codex InstructGPT GPT-3
100 100 100 100
90 90 90 90
80} 80 |- 80 |- 80 |-
=70 70 |- 70 |- 70 |-
Z 60| 60 |- 60 |- 60 |-
2 50| 50 |- 50 |- 50 |-
‘g 40) 40 40 40
S 30| 30| 30 | 30|
< 99 20 20 20
10 |- 10 | 10 4 10 |-
0 o U 0
8B 62B 540B c-c-1 c-d-1 c-d-2 a-1 b-1c-1d-1d-2 a b ¢ d

[] Semantically-unrelated targets (SUL-ICL) I Natural language targets (regular ICL)

Wei, Jerry, et al. "Larger language models do in-context learning differently.” arXiv preprint arXiv:2303.03846 (2023).



|CL with Semantically Unrelated Labels Emerges with Scale

100
80
60
40
20

0

Accuracy (%)

100 100
80 //"‘ 80
. / 60 - _.;-‘,/j; 60 L
== === qF T AOF ™ """
- 20 20
£ ! ! 0kt s ! 0 ! !
2 4 8 16 2 4 8 16 2 4 8 16
# exemplars per class # exemplars per class # exemplars per class
—4+— PalLM-540B —e— code-davinci-002 —#— curie
—+— PaLM-62B —e— code-davinci-001 babbage
PalLM-8B —e— code-cushman-001 ada
- - - Random --- Random - -- Random

Figure 4: In the SUL-ICL setup, larger models benefit more from additional exemplars than smaller
models do. Accuracy is calculated over 100 evaluation examples per dataset and averaged across all
datasets. A per-dataset version of this figure is shown in Figure 18 in the Appendix.
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Figure 5: Some tasks in the SUL-ICL setting emerge with scale and can only be successfully
performed by large-enough models. These experiments use k£ = 8 in-context exemplars per class.
Accuracy is calculated over 100 evaluation examples.
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Effect of Instruction Tuning

* Better at learning novel input-output label mapping
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LLMs can Perform Linear Classification via ICL
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* These phenomenon can not be fully explained by the Bayesian inference framework.
* There are still many questions to be answered about |CL!
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Summary

* In-Context Learning as an emerging ability from LLM:
* In-Context Learning is an empirical method that enables efficient ‘learning’ happens.

* Understanding how LLMs conduct ICL, e.g., conducting Bayesian inference to ‘locate
and extract some pre-trained knowledge or

* There are still many unanswered questions about ICL!

* Further Reading:
* A great blog written by the authors of aforementioned two papers about ICL:

A' The Stanford Al Lab Blog bout  Posts™  Subscribe  SAIL

How does in-context learning work? A framework for
understanding the differences from traditional supervised
learning

Sang Michael Xie and Sewon Min

 How ICL works with transformer architecture:
Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes.” (NeurlPS 2022).

Akyurek, Ekin, et al. “What learning algorithm is in-context learning? investigations with linear models.” (ICLR 2023).



Thanks!
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