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Today’s Goal

• Get general pictures of downstream adaptation methods for 
foundation models.

• Take pre-trained language models for example.

• Share some insightful research works on this topic.

• Mainly focus on a “black box treatment” of language models. 

• From “I know it works” to “I have some idea on how/why it works” through 
theoretical analysis under some simplified settings.

• Show some empirical evidence related to the theoretical analysis.



Pre-trained Language Models 

• Given text sequences    from large corpora    , we 
can learn a language model     by self-supervised 
learning, which models some conditional 
probabilities:

• Autoregressive language modeling (GPT family):

• Masked language modeling (BERT family):

   where                               is the mask indices. 
Gao, Leo, et al. "The pile: An 800gb dataset of diverse text for language modeling." arXiv:2101.00027 (2020).

Amit, C. " Self Supervised Representation Learning in NLP. " (2020).

Autoregressive Language Modeling

Masked Language Modeling

“The Pile” Corpora (~1000GiB)



Downstream Adaption of PLMs

• In real-word scenarios, we might expect more than left-to-right completion
or mask filling                     .  

• For example:

• Text classification:

Given a text sequence    , we want to identify a particular attribute           corresponds to    , 
e.g., spam filter, sentiment analysis.

• Instruction following:

Given a user instruction   , we want the model to generate high-quality response            that 
maximizes an unobserved human reward function                         .   

• Other applications: 

information retrieval, summarization, controllable generation, etc.

• Intuitively, large language models have learned a rich set of linguistic features so it 
should be easily adapted to downstream tasks



Downstream Adaption of PLMs
It works!

• There are two mainstream ways to adapt PLMs on 
downstream tasks:

• Fine-tuning (In-Weight Learning):

• Gradient-based parameter updates.

• Learn or “remember” class information during fine-tuning.

• In-Context Learning:

• No parameter updates.

• Learn with a concatenation of demonstrations.

• It turns out that downstream adaptation of PLMs is 
effective in terms of both quality and efficiency.

• Why these adaptations could work on PLMs?
An example of in-context learning

Fine-tuned LMs outperform 

human baseline in SuperGLUE 

natural language understanding 

benchmark



Fine-tune a Pre-trained Masked Language Model
A rough picture on how fine-tuning works

• In the pre-training phase, the MLM first uses a transformer-based text encoder  
to get hidden representations         of input sequence, then a language modeling 
head is applied on         to get the conditional probability                     .

• In the fine-tuning phase, a newly initialized classification head is applied to 
         and is jointly optimized with the LM using downstream data          . 

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." (2018).



Why PLMs Help in Downstream Task?

• We could get some insights about why fine-tuning a pre-trained MLM is effective 
by analyzing a simplified setting:

• Downstream task: text classification.

• Fine-tuning methods: head tuning (optimize the classification head only).

• Data generating distribution: Hidden Markov Model. 

• Definitions:
• Pre-trained Model. Assume our pre-trained masked language model could perfectly 

compute the conditional probability                                         , which is a probability vector 
over the vocabulary space    .                  

• Downstream Task. The downstream task contains paired data                                , where
                    is the ground-truth mapping and     is a discrete set of labels. 

• Head Tuning. Use a classification head    on top of fixed model outputs, e.g., 
                                      for classification.

• Remark. In practice, the classifier is built on top of contextualized representations.

Wei, Colin, Sang Michael Xie, and Tengyu Ma. "Why do pretrained language models help in downstream tasks? an analysis of head and prompt tuning." (NeurIPS 2021).



Review: Hidden Markov Model

• Hidden Markov Model (HMM) is a probabilistic graph model:

• Joint probability:

• Conditional independence: 
Conditional independence in Bayesian network



Analysis with HMMs

• Data distribution.
• Joint probability: 

• We have time-invariant transition probability for all timesteps         ,  

    i.e., 

• We have time-invariant token emission probability for all timesteps         ,

    i.e. 

• Downstream task.
• The ground-truth mapping is assumed to be a linear classifier on the posterior                 :

• The downstream classifier is built on top of the conditional probability                              :

    

Wei, Colin, Sang Michael Xie, and Tengyu Ma. "Why do pretrained language models help in downstream tasks? an analysis of head and prompt tuning." (NeurIPS 2021).



Bridge the Gap between Conditional Prob & Posterior (I)

• Lemma 1.  If the Markov chain                      is ergodic and          has full 
support, then for any timestep         , there exists a diagonal matrix     such that 
for all sequence                         ,  

   where     is a positive scalar.    

• Proof. 

Wei, Colin, Sang Michael Xie, and Tengyu Ma. "Why do pretrained language models help in downstream tasks? an analysis of head and prompt tuning." (NeurIPS 2021).



Bridge the Gap between Conditional Prob & Posterior (II)

• Lemma 2. Let            be random variables such that                  . Then for any
   ,                                                         . Thus, if              has a left inverse  
               ,then
   

• Recall that in HMM,  we have                   , apply Lemma 2, let                  , then:

• If the token emission probability matrix     has linearly independent columns, then: 

• By Lemma 1, we have:

• Hence, we can recover the posterior-based ground-truth mapping using a linear 
classification head on top of a conditional probability.

Wei, Colin, Sang Michael Xie, and Tengyu Ma. "Why do pretrained language models help in downstream tasks? an analysis of head and prompt tuning." (NeurIPS 2021).



Beyond (Linear) Head Tuning and HMM

• Under above setting, the full column rank assumption on                        implies 
              ,  which is unrealistic because we usually adopt a large model to ensure 
its expressivity.

• This assumption can be further relaxed via:
• More flexible tuning methods, e.g., soft prompt tuning.

• More powerful data generating distribution, e.g., memory augmented HMM.

• You can refer to the original paper for further analysis.
Wei, Colin, Sang Michael Xie, and Tengyu Ma. "Why do pretrained language models help in downstream tasks? an analysis of head and prompt tuning." (NeurIPS 2021).



Empirical Evidence: Scaling Law of Soft Prompt Tuning

Lester, Brian, Rami Al-Rfou, and Noah Constant. “The power of scale for parameter-efficient prompt tuning.” (EMNLP 2021).

• Soft prompt tuning of T5 matches the quality of standard full parameter fine-
tuning as size increases.



Summary

• Pre-training on large-scale datasets with self-supervised learning enables efficient
and effective adaptation to downstream tasks.

• There exists some relationship between the self-supervised objective and the
performance on downstream tasks, which is seemingly unrelated.

• Further Reading:

• Closer look to relationship between pre-training loss and downstream performance:
Liu, Hong, et al. “Same pre-training loss, better downstream: Implicit bias matters for language 
models.” (ICML 2023).



In-Context Learning
An intriguing phenomenon

• In-Context Learning (ICL) was popularized in the original GPT-3 paper as an 
adaptation technique for larger language models to learn tasks given only a few 
examples.

Brown, Tom, et al. "Language models are few-shot learners." (NeurIPS 2020).

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).



The Mystery of In-Context Learning

• What can ICL do?
• On many NLP benchmarks, ICL is competitive with supervised learning using less

labeled data.

• ICL has enabled people to build new applications in just a few hours (prompt engineering).

• Why ICL surprising?
• ICL does not need any parameter updates.

• ICL just emerges from large PLMs, where the model did not explicitly learn with such pattern.

• What the model does when conducting ICL?
• Indexing into a vast set of known tasks from the training data?

• Learning new tasks from in-context examples at inference time?

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).



A Framework for ICL as Bayesian Inference

• If the LM fits the pretraining distribution with enough data and expressivity, the question of 
ICL becomes matching                               under pretraining distribution and a different 
distribution             via marginalization:  

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Formalizing ICL

• Pretraining distribution.
• A latent concept (task)    from a family of concepts     defines a distribution 

   over observed tokens    from a vocabulary    .

• Document generation:

• Sample                .

• Generate the document by                             , which is defined by a HMM. The concept    
determines the transition probability matrix of HMM between                  from a hidden state set     

• Pretraining:

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Formalizing ICL

• In-Context Prompts.
• A prompt example composes an input sequence    and an output token   .

• The prompts is a concatenation of    independent training examples and a test input        , 
which are all conditioned on a shared prompt concept    . The goal is to predict        .   

• Prompt generation:

• Generate a start hidden state          from a prompt start distribution            .  

• Given         , generate the example sequence                     from the pretraining distribution
                        conditioned on     . 

• A special delimiter token           is used to split these examples.

• The prompt can be written as:

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Formalizing ICL

• There exists a mismatch between prompt and pretraining distributions:
• The transition between ICL examples has low probability in the pretraining distribution.

• The choice of          can also be a source of mismatch. 

• Under such mismatch, LLMs can correctly infer the prompt concept from examples.
• Ground Truth: 

• In-Context predictor: 

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
High-level Approach

• Our goal is to show                                                                  as     grows. 

• Expanding                   :  

where                                    .   

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
High-level Approach

• Goal: 

• Expanding                   : 

• If                             for all concepts   except the prompt concept    , then the 

   prompt concept      is “selected” as a consequence of Bayesian inference. 

• New goal: 
• Concept selection: show the average likelihood ratio                                      converges to a 

negative constant for all           .                                        

• Same prediction under     : 

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Heuristic derivation

• A main technical challenge in this setting is:
• First, the in-context examples                     are i.i.d.

• However,  they are dependent w.r.t. the pretraining distribution in ICL.

• Under some assumptions on bounded                   and               , we can perform 
factorization with constant error per sample: 

• Then: 

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Heuristic derivation

• From

• The expectation can be decomposed to two KL terms:

   

• When KL term     Error term for all           , we will get                           . 

• The prompt should provide enough signal (distinguishability) for Bayesian 
inference.  

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL as Bayesian Inference
Heuristic derivation

• Last piece: 

• Expanding                          : 

• Expanding LHS: 

• Same argmax when the difference between                    and                     is moderate.   
Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



Summary

• In-context examples provide noisy evidence for Bayesian inference.
• The input distribution, label distribution and input-output mapping all provide signal for 

Bayesian inference.

• ICL is robust to some noise.

• With a strong signal, some forms of noise (e.g., low-prob transitions between examples, 
removed input-output mapping) could be tolerable.

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).



Empirical Evidence: Investigating ICL’s Components

• Typical in-context examples consists of 4 components:

• Examine the role of input-output mapping by:
• Zero-Shot learning

• Examples with ground-truth outputs

• Examples with random outputs

Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." (EMNLP 2022).



Effect of Input-Output Mapping

• Results of models whose sizes range from 774M to 175B

• Correct input-output mapping has a marginal effect on ICL (with implications).

Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." (EMNLP 2022).



Effect of Input and Label Space

• The input distribution and the label space of in-context examples matter.

• Both changes can lead to a significant performance drop.

Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." (EMNLP 2022).

Replace the prompt input with random 

inputs from an external corpus

Replace the prompt label with random 

English unigrams



A Framework for ICL as Bayesian Inference

• Is the story ends?

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).



Different Story for Larger LMs

• To successfully perform ICL, models can
• Mostly use semantic prior knowledge to predict labels while following the format of in-

context examples

• Learn the input-label mappings from examples (overriding semantic prior or only exploit the 
input-output mapping).

• Study how semantic priors and input-label mappings interact in several 
experimental settings.

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



Experiment Setting

• Tasks: standard NLP classification datasets

• Models: ranging 350M ~ 540B, w/ and w/o instruct tuning.

• Use 16 context examples for each dataset.

• Use 100 randomly sampled evaluation examples per dataset.

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



Input-Label Mapping Override Semantic Priors in LLMs

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



ICL with Semantically Unrelated Labels Emerges with Scale

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



ICL with Semantically Unrelated Labels Emerges with Scale

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



Effect of Instruction Tuning

• Better at learning novel input-output label mapping

• Bad at overriding semantic prior

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



LLMs can Perform Linear Classification via ICL

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).

• These phenomenon can not be fully explained by the Bayesian inference framework.

• There are still many questions to be answered about ICL!



Summary

• In-Context Learning as an emerging ability from LLM:
• In-Context Learning is an empirical method that enables efficient ‘learning’ happens.

• Understanding how LLMs conduct ICL, e.g., conducting Bayesian inference to ‘locate 
and extract some pre-trained knowledge or learning novel tasks from context.

• There are still many unanswered questions about ICL!

• Further Reading:
• A great blog written by the authors of aforementioned two papers about ICL:

• How ICL works with transformer architecture:
• Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes.“ (NeurIPS 2022).

• Akyürek, Ekin, et al. “What learning algorithm is in-context learning? investigations with linear models.” (ICLR 2023).



Thanks!
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