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Transformer-based Language Models

• Pre-trained generative language model:

Autoregressive Language Model (e.g., GPT):

• Masked Language Model (e.g., BERT):

Alammar, J. " The Illustrated Transformer. " (2018).



Emerging Abilities of LLMs

• In-Weight Learning:
• Gradient-based parameter updates.

• Learn or “remember” class information
during training.

• In-Context Learning:
• No parameter updates.

• Learn with a concatenation of
demonstrations.



In-Context Learning

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).

In-Context Learning (ICL) was popularized in the original GPT-3 paper as a 
way to use language models to learn tasks given only a few examples.



The mystery of ICL

• What can ICL do?
• On many NLP benchmarks, ICL is competitive with supervised learning using less labeled

data.

• ICL has enabled people to build new applications in just a few hours (prompt engineering).

• Why ICL surprising?
• ICL does not need any parameter updates.

• ICL just emerges from large PLMs, which there is a mismatch between pretraining and ICL

• What the model does when conducting ICL?
• Indexing into a vast set of known tasks from the training data?

• The model have developed the ability to learn new tasks from in-context examples?

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).



Example: OpenAI Chat API

From OpenAI/evals



Instruction as ‘Zero-shot’ ICL

• The ability of following instruction is obtained from
instruction tuning, which allows model directly follow
instructions without context examples.

• The AI model acts as an intelligent API caller. Given an API 
spec and a natural-language description of when to use 
the API, the model proactively calls the API to perform 
actions.

• Example: OpenAI Plugin
• "description_for_model": "Plugin for searching through the user's 

documents (such as files, emails, and more) to find answers to 
questions and retrieve relevant information. Use it whenever a 
user asks something that might be found in their personal 
information.”

• Description acts as hyperparameter.



A Framework for ICL

• Pretraining distribution.
• A latent concept (task) from a family of concepts defines a distribution over observed

tokens from a vocabulary .

• Generating document: First sample , then generate corresponding document by
, which is defined by a HMM. The concept determines the transition

probability matrix of HMM from a hidden state set .

• Pretraining:

• Prompt distribution.
• Prompt input:

• All exemplars are conditioned on a shared concept :

• Test example:

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL

• Mismatch between prompt and pretraining distributions:

• In-context predictor through pretraining distribution: 

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



High Level Method

• Goal: Show                                                                                                     as     grows.

• Expand                           :

• If                                    for all concepts    except the prompt concept     , then the 
prompt      is “selected” as a consequence of Bayesian inference.                                                            

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



Formal Results (Presented Intuitively)

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



Prompts Provide Noisy Evidence for Bayesian Inference

• Context examples provides signal.
• The input distribution, label distribution and input-output mapping all provide signal for 

Bayesian inference.

• ICL is robust to some noise.
• With a strong signal, some forms of noise (e.g., low-prob transitions between examples, 

removed input-output mapping) could be tolerable.

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).



Empirical Evidence

• Typical in-context examples consists of 4 components:

• Examine the role of input-output mapping by:
• Zero-Shot learning

• Examples with ground-truth outputs

• Examples with random outputs

Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." (EMNLP 2022).



Empirical Evidence

• Results of models whose sizes range from 774M to 175B

• Correct input-output mapping has a marginal effect on ICL (with implications).

Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." (EMNLP 2022).



Effect of Input and Label Space

• The input distribution and the label space of in-context examples matter.

• Both change can lead to a significant performance drop.

Replace the prompt input with random 
inputs from an external corpus

Replace the prompt label with random 
English unigrams



A Framework for ICL

• Pretraining distribution:

• What if we define a novel concept      for ICL? 

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).



Different Story for Larger LMs

• To successfully perform ICL, models can
• Mostly use semantic prior knowledge to predict labels while following the format of in-

context examples

• Learn the input-label mappings from examples (overriding semantic prior or only exploit the 
input-output mapping).

• Study how semantic priors and input-label mappings interact in several 
experimental settings.

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



Experiment Setting

• Tasks: standard NLP classification datasets

• Models: ranging 350M ~ 540B, w/ and w/o instruct tuning.

• Use 16 context examples for each dataset.

• Use 100 randomly sampled evaluation examples per dataset.

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



Input-Label Mapping Override Semantic Priors in LLMs

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



ICL with Semantically Unrelated Labels Emerges with Scale

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



ICL with Semantically Unrelated Labels Emerges with Scale



Effect of Instruction Tuning

• Better at learning novel input-output label mapping

• Bad at overriding semantic prior



LLMs can Perform Linear Classification



Inspired Method for In-Context Example Selection

Wang, Xinyi, Wanrong Zhu, and William Yang Wang. "Large Language Models Are Implicitly Topic Models: Explaining and Finding Good Demonstrations for In-Context Learning." 

arXiv preprint arXiv:2301.11916 (2023).



Summary: ICL in LLM

• In-Context Learning as an emerging ability from LLM:
• In-Context Learning is an empirical method that enables effective ‘learning’

happens.

• Understanding how LLM conduct ICL, e.g., conducting Bayesian inference to 
‘locate and extract’ some pre-trained knowledge or learning novel tasks 
from context.

• Next: In-Context Learning as a learning paradigm.
• When can ICL happen?

• What and How transformers learn with ICL.



Data Distribution Properties Drive ICL

• Explore the possibility that a capacity for ICL depends on the distributional 
qualities of the training data.

• Properties of natural (language) data:
• Natural data is temporally “bursty”, e.g., a given entity may have a distribution that is not 

uniform across time, instead tending to appear in clusters.

• Natural data has the property that the marginal distribution across entities is highly skewed, 
following a Zipfian distribution with a long tail of infrequent items.

• The semantic of entities in natural data is often dynamic rather than fixed, they should be 
interpreted using context.

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers." (NeurIPS 2022).



Experimental Design

• Training data: Omniglot dataset
• Consists of 1623 different character classes

from various international alphabets.

• Each class contains 20 handwritten
examples.

• “Bursty”: 2 classes of examples appear 3
times in a sequence.

• “Non-Bursty”: each class appears uniformly.

• Evaluation data:
• In-weight: the image classes were forced to 

be unique within each sequence.

• In-context: a random ordering of 2 different 
newly assigned image classes with 4 
examples.

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers." (NeurIPS 2022).



What Kinds of Training Data Promote ICL?

• Burstiness

• Infrequent Classes

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers." (NeurIPS 2022).



What Kinds of Training Data Promote ICL?

• Dynamic label

• Distribution shift

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers." (NeurIPS 2022).



Does IWL and ICL Compatible?

• In-weight learning and in-context learning both exist in LLM.

• Many natural phenomena such as word distributions are described as a Zipfian
(power law) distribution.

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers." (NeurIPS 2022).



Architecture Matters Too

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers." (NeurIPS 2022).



Brief Review of Transformer Block

• Transformers are seq2seq NNs that map input vectors                                 to a 
sequence of output vectors                               .

• Each block (layer) in a transformer maps a matrix                                     to             . 

• Computation of typical autoregressive (decoder-only) transformer models:
• Self-Attention:

• Feed-forward transformation:



ICL as Implicit Fine-tuning

• The linear layers optimized by GD
have a dual form of linear
attention.

• ICL and explicit fine-tuning share 
a dual view of GD based 
optimization.

Dai, Damai, et al. "Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta Optimizers." arXiv preprint arXiv:2212.10559 (2022).



Dual Form of a Linear Layer Trained by GD

• Linear layer: 

• A Linear layer in a NN trained by GD in some error function     using     training 
inputs                         and corresponding BP error signals                        , 
where                                 , can be represented by:      

Irie, Kazuki, Róbert Csordás, and Jürgen Schmidhuber. "The dual form of neural networks revisited: Connecting test time predictions to training patterns via spotlights of attention.“ (ICML 2022).



Attention Computation in the ICL setting

• In the ICL setting, let               be the demonstrations,               be the input 
representation of a query token, and                      be the attention query vector. 

• The attention result of a head is formulated as:

• Approximate the standard linear attention by linear attention:

Dai, Damai, et al. "Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta Optimizers." arXiv preprint arXiv:2212.10559 (2022).



Dual Form of the Transformer Attention

• Define                                                 , 
 then:

which is similar to fine-tuning:   

Dai, Damai, et al. "Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta Optimizers." arXiv preprint arXiv:2212.10559 (2022).



Experimental Results

Dai, Damai, et al. "Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta Optimizers." arXiv preprint arXiv:2212.10559 (2022).



What can Transformers Learn In-Context?

• It is unclear to what extent transformers have developed the ability to learn new 
tasks from in-context examples alone as opposed to simply indexing into a vast 
set of known tasks from the training data.

• Consider a well-defined problem to learning a function class from in-context 
examples:
• Let        be a distribution over inputs and        be a distribution over functions in     .

• A prompt     is a sequence

• A model      can in-context learn the function class     up to    , w.r.t.                    , if         

• Can we train a model to in-context learn a certain function class?

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes." (NeurIPS 2022).



Training Transformers for ICL

• Constructing prompts                   
• Denote 

• In the case of linear functions,                         ,   

• Training objective:

• Model structure: 12 layers, 8 attention heads, 256-dim hidden space decoder-
only transformer (22.4M parameters).

• In this work, training is done from scratch, instead of fine-tune a pre-trained LM.

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes." (NeurIPS 2022).



ICL of linear functions

• Dim              .

• Baselines:
• Least squares estimator

•    -Nearest Neighbors

• Averaging:

• Memorization can’t explain model performance:
• The inputs alone lie in a 800-dim space when predicting with 2   in-context examples.

• The best weight vector in the training set can not achieve such test error.

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes." (NeurIPS 2022).



What Function is the Model Learning In-Context

• Consider the case of              (fewer in-context examples). The ideal model should 
approximate the projection of true     onto the subspace spanned by                     .   

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes." (NeurIPS 2022).



Extrapolating Beyond the Training Distribution

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes." (NeurIPS 2022).



More Complex Function Classes

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes." (NeurIPS 2022).



What Learning Algorithm is in ICL?

• Instead of understanding what functions ICL can learn, this work focuses on how 
it learns these functions.

• Theoretically, this paper proves by construction that, for   -dim regression 
problems, a transformer with           hidden size and constant depth can 
implement a single step of GD; with             hidden size and constant depth, a 
transformer can update a ridge regression solution.  

• Empirically, this paper shows that how ICL-based models are matched by existing 
predictors. 

• Some ICL appears to involve familiar algorithms, discovered and implemented by 
transformers from sequence modeling task alone.

Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



What can Transformers Do by Construction

• Consider some functions from                                : 
•                                           : selects the entries of the       column of      between rows    and   , and 

copies them into the       column of      between rows     and     , yielding the matrix:   

•                                                                       : 

•                                                :  

•                                                                             :  

Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



Example: One-Step GD

• Takeaway: The theoretical finding shows the implementation of a single step of 
an iterative algorithm can be done in practical in-context learning setting.

Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



The Behavior of Real Learners

• Empirically explain ICL at computational level by identifying the kind of 
algorithms to regression problems that transformer-based ICL implements.

• Behavioral Metrics: Quantifying the degree to which two predictors agree.
• Squared prediction difference. Given any learning algorithm      that maps from a set of 

input-output pairs                                              to a predictor                                , the SPD is 
defined as:

  

• Implicit linear weight difference. Given     ,   , and an additional collection of unlabeled test 
inputs                          and compute a predictor-specific dataset

    then:    

Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



Results on Noiseless Datasets

• The agreement between the ICL and OLS is considerably high.

• When the number of in-context examples is less than the input dimension (            ), there are 
multiple linear models can exactly fit the under-determined linear regression problem.

• ICL behaves like OLS in this case, which selects the minimum-norm weight vector, indicating that 
ICL learns to output the minimum Bayes risk solution when predicting under uncertainty.

Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



Results on Noisy Datasets

• As noise variance increases, the value of the ridge parameter that 
best explains ICL behavior also increases, showing that ICL in this 
setting behaviorally matches minimum-Bayes-risk predictor.

Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



Relation between Size and Implemented Algorithm

Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



Does ICL Encode Meaningful Intermediates?

• Take a trained in-context learner with frozen weights, then train an auxiliary 
probing model to recover some target quantities from the model’s hidden 
representations. 

Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



Summary

• Data distribution and transformer architecture play an important role
in ICL.
• Natural data distribution’s special properties contribute to the emerge of ICL.

• Model’s inductive bias may help encode some powerful learning algorithm.

• Scaling up the model may produce more complex or multi-step learning
algorithm that enables learning from context (e.g., novel label space).



THANKS!
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