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Transformer-based Language Models

* Pre-trained generative language model: py(x)
t
S — ( tinear + Softmax )
Autoregressive Language Model (e.g., GPT): EEREE t
’ — [ =)
E EEEEEEEEE * + t +
Ealm = — 10gp9($t|w<t) WITH TIME T OO0 EEE
t:]_ EEEEEEEEEE o I R rrnm
 Masked Language Model (e.g., BERT): e
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Alammar, J. " The Illustrated Transformer. " (2018).



Emerging Abilities of LLMs

* In-Weight Learning:
* Gradient-based parameter updates.

 Learn or “remember” class information
during training.

* In-Context Learning:

* No parameter updates.

* Learn with a concatenation of
demonstrations.
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Circulation revenue has increased by 5% in Finland. \n Positive
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In-Context Learning

In-Context Learning (ICL) was popularized in the original GPT-3 paper as a
way to use language models to learn tasks given only a few examples.

Circulation revenue has increased by 5% Circulation revenue has increased by
in Finland. // Positive 5% in Finland. // Finance

Panostaja did not disclose the purchase They defeated ... in the NFC

price. // Neutral Championship Game. // Sports
Paying off the national debt will be Apple ... development of in-house
extremely painful. // Negative chips. // Tech

The company anticipated its operating The company anticipated its operating
profit to improve. // profit to improve. //

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning” (2022).



The mystery of ICL

e What can ICL do?

* On many NLP benchmarks, ICL is competitive with supervised learning using less labeled
data.

* ICL has enabled people to build new applicationsin just a few hours (prompt engineering).

* Why ICL surprising?
* |ICL does not need any parameter updates.
* |ICL just emerges from large PLMs, which there is a mismatch between pretraining and ICL

 What the model does when conducting ICL?

* Indexing into a vast set of known tasks from the training data?
* The model have developed the ability to learn new tasks from in-context examples?

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).



Example: OpenAl Chat AP

Prompt:
{'role': 'system', 'content': 'The following are multiple choice guestions (with answers) about machine_learning.
{'role': 'system', 'content': 'A &é-sided die is rolled 15 times and the resuvlts are: side 1 comes up B times; sid
{'role': 'system', 'content': 'B"', 'name': 'example_assistant'},
{'role': 'system', 'content': 'Which image data augmentation is most common for natural images?‘\nA. random crop a
{'role': 'system', 'content': 'A"', ‘'name': 'example_assistant'},

{'role': 'system', 'content': 'You are reviewing papers for the World/|s Fanciest Machine Learning Conference, and
{'role': 'system', 'content': 'C', 'name': 'example_assistant'},
{'role': 'system', 'content': "To achieve an B8/1 loss estimate that is less than 1 percent of the true 8f1 loss (
{'role': 'system', 'content': 'D', '‘name': 'example_assistant'},
'role': 'user', 'content': "Which of the following can only be used when training data are linearly separable?\n
Sampled: A. Linear hard-margin SVM.

From OpenAl/evals



Instruction as ‘Zero-shot” ICL

* The ability of following instruction is obtained from
instruction tuning, which allows model directly follow
instructions without context examples.

* The Al model acts as an intelligent API caller. Given an API
spec and a natural-language description of when to use
the API, the model proactively calls the APl to perform
actions.

* Example: OpenAl Plugin

e "description_for_model": "Plugin for searching through the user's
documents (such as files, emails, and more) to find answers to
guestions and retrieve relevant information. Use it whenever a
user asks something that might be found in their personal
information.”

* Description acts as hyperparameter.

Hello, could you explain openai plugin for
me

Searching for: openai plugin

Generating answers for you...

OpenAl has implemented initial support for
plugins in ChatGPT. Plugins are tools
designed specifically for language models
with safety as a core principle, and help
ChatGPT access up-to-date information, run
computations, or use third-party services ! .
These plugins enable ChatGPT to interact
with APIs defined by developers, enhancing
ChatGPT'’s capabilities and allowing it to
perform a wide range of actions such as
retrieving real-time information (e.g., sports
scores, stock prices), retrieving knowledge-

base information (e.g., company docs), or
performing actions on behalf of the user
(e.g., booking a flight) 2 .

Would you like more information about
OpenAl plugins?
Learn more:

1. openai.com

2. platform.openai.com = +1 more




A Framework for ICL

* Pretraining distribution.

* A latent concept (task) 8 from a family of concepts © defines a distribution over observed
tokens o from a vocabulary O.

* Generating document: First sampled ~ p(6), then generate corresponding document by
p(o1,...,or | 6),whichis defined by a HMM. The concept § determines the transition
probability matrix of HMM h+, ..., hr from a hidden state set .

* Pretraining: p(01,...,0T)=/ p(o1,...,or|0)p(0)dd
HcO

* Prompt distribution.
* Promptinput: [Sn, Ttest | = [a:l,yl, oM o g, 0 g, 0O g } ~ Dprompt
« All exemplars O; = [z, y:] are conditioned on a shared concept*: p (O;|h;*™" ,0%)
* Test example:

Ytost ~ Pprompt (Ul Ttest ) = Bngtartcp e (hitat o) [P (U]Trests ekt 07)

test test

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



A Framework for ICL

* Mismatch between prompt and pretraining distributions:

00D |low-prob transitions
between examples

ATA! nNn

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curie was

In-distribution transitions
reveal information about 8*

* In-context predictor through pretraining distribution:
fn (xtest) — argmaXxy, p (y‘Sna ajtest)

LO_l (fn) — IE‘::501:est;’ytestf\“pplrompt []‘ [fn (:CteSt) # ytest“

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



High Level Method

* Goal: Show arg maxy p (y|Sn, Ttest) — ArgMax, Pprompt (Y|Ttest)as 1 grows.

 Expand P (Y|Sn, Ttest):

star star Sh , Ttest |0
P(YSns Trest) O fy 3 potart ey D (UlTrests B2, 0) p (R S, sy, 0) ZS=tiet 2l () d6

test

Sn s Trest |0 N
. If pp((sn,;;jl@*)) > 0 for all concepts 0 except the prompt concept §*, then the

prompt g* is “selected” as a consequence of Bayesian inference.

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



Formal Results (Presented Intuitively)

Condition 1 (Distinguishability). We define 6* to be distinguishable if for all 0 € ©,0 # 0%,
k

Z KLJ: (9* He) > Esgmrt + Egefim'
j=1

Theorem 1. Assume the assumptions in Section 2.1 hold. If Condition 1 holds, then as n — oo the predic-
tion according to the pretraining distribution is

arg max p(y|Sn, Tiest) — argmax ppmmpt(ylmtest)- (15)
) y

Thus, the in-context predictor f, achieves the optimal 0-1 risk: limy, o Lo (fn) = inf; Lo (f).

Xie, Sang Michael, et al. “An explanation of in-context learning as implicit bayesian inference.” (ICLR 2022).



Prompts Provide Noisy Evidence for Bayesian Inference

* Context examples provides signal.

* The input distribution, label distribution and input-output mapping all provide signal for
Bayesian inference.

* |ICL is robust to some noise.

* With a strong signal, some forms of noise (e.g., low-prob transitions between examples,
removed input-output mapping) could be tolerable.

Circulation revenue has increased by 5% in Finland. // Finance
They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning" (2022).



Empirical Evidence

* Typical in-context examples consists of 4 components:

Input distribution Output space
I Circulation revenue has increased by 5% in Finland. \n Positive I
| Panostaja did not disclose the purchase price. \n Neutral | Format

| Paying off the national debt will be extremely painful. \n Negative |

Input-output mapping

* Examine the role of input-output mapping by:
e Zero-Shot learning
* Examples with ground-truth outputs
* Examples with random outputs

Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." (EMNLP 2022).



Empirical Evidence

* Results of models whose sizes range from 774M to 175B

60 Classification
o W No Demos ' Demos w/ gold labels #% Demos w/ random labels
~50
g
E a5
g 40
]
Z 35
30
» Channel Direct Channel Direct Channel Channel
GPT-2 GPT-2 MetalCL MetalCL fairseq 6.7B  fairseq 6.7B  fairseq 13B  fairseq 13B GPT-3 GPT-3
70 Multi-choice
o i No Demos " Demos w/ gold labels # Demos w/ random labels
~ 60
g
=55
&
550
3

Direct Channel Direct Channel Direct Channel
GPT-2 GPT-2 MetalCL MetalCL GPT] GPT]

Direct
fairseq 6.7B

Channel Direct Channel
fairseq 6.7B  fairseq 13B  fairseq 13B

e Correct input-output mapping has a marginal effect on ICL (with implications).

Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." (EMNLP 2022).



Effect of Input and Label Space

* The input distribution and the label space of in-context examples matter.

Colour-printed lithograph. Very good condition. \n
Many accompanying marketing ... meaning. \n
In case you are interested in learning more about ... \n

The company anticipated its operating profit to improve. \n

*Randomly Sampled from CC News ;

i

Neutral m

Replace the prompt input with random
inputs from an external corpus

Neutral
Negative
Positive

Circulation revenue has increased by 5% in Finland. \n Unanimity
Panostaja did not disclose the purchase price. \n Wave
Paying off the national debt will be extremely painful. \n Guana
The company anticipated its operating profit to improve. \n

! *Random English unigrams

i

Neutral m

Replace the prompt label with random
English unigrams

* Both change can lead to a significant performance drop.



A Framework for ICL

* Pretraining distribution: p(o1,...,07) = p(o1,...,o0r|0)p(0)do
fco

Signal for Bayesian inference

Input distribution Output space
| Circulation revenue has increased by 5% in Finland. \n Neutral |
| Panostaja did not disclose the purchase price. \n Negative J Format

| Paying off the national debt will be extremely painful. \n Positive |

Input-wpping

Random outputs add noise,
but doesn't remove all signals
for Bayesian inference

 What if we define a novel concept 6* for ICL?

Xie, Sang Michael, and Min, Sewon "How does in-context learning work? A framework for understanding the differences from traditional supervised learning” (2022).



Different Story for Larger LMs

* To successfully perform ICL, models can

* Mostly use semantic prior knowledge to predict labels while following the format of in-
context examples

* Learn the input-label mappings from examples (overriding semantic prior or only exploit the
input-output mapping).
e Study how semantic priors and input-label mappings interact in several
experimental settings.

Regular ICL I Flipped-Label ICL ! SuL-IcL
Natural language targets: | Flipped natural language targefs: | Semantically-unrelated targets:
{Positive/Negative} sentiment I {Negative/Positive} sentiment I {Foo/Bar}, {Apple/Orange}, {A/B}
Contains no wit[...] \n  Negative | Contains no wit[...] \n Positive | Contains no wit [...] \n Foo
Very good viewing [...] \n  Positive Very good viewing [...] \n Negative Very good viewing [...] \n Bar
A smile on your face \n A smile on your face \n I A smile on your face \n
I I
Language | Language | Language
Model I Model I Model
Positive | Negative |

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



Experiment Setting

Tasks: standard NLP classification datasets

Models: ranging 350M ~ 540B, w/ and w/o instruct tuning.

Use 16 context examples for each dataset.

Use 100 randomly sampled evaluation examples per dataset.

Model Family | Model Name (Abbreviation)

GPT-3

ada (a), babbage (b), curie (c), davinci (d)

InstructGPT

text-ada-001 (a-1), text-babbage-001 (b-1),
text-curie-001 (c-1), text-davinci-001 (d-1),
text-davinci-002 (d-2)

Codex

code-cushman-001 (c-c-1), code-davinci-001
(c-d-1), code-davinci-002 (c-d-2)

PalLM

PalLM-8B, PaL.M-62B, PalLM-540B

Flan-PaLM

Flan-PalLLM-8B, Flan-PalLM-62B, Flan-
PalLM-540B

Table 1: Models used in this paper.

Wei, Jerry, et al. "Larger language models do in-context learning differently." arXiv preprint arXiv:2303.03846 (2023).



Input-Label Mapping Override Semantic Priors in LLMs

Pal.M Codex InstructGPT GPT-3
100 | 100 | 100 | 100 |
< 80 "‘"’N\\ 80 80 \A.___,k\,\ 80 —
560 T oo, O[T o0 o O
S 40 \ 40 40 \ 40 ’
<20} 20 | 20 | 20 |
0_ | | 0_ | | 0_ | | | 0_ | | |
0 25 50 75 100 0 25 50 75 100 0O 25 50 75 100 0 25 50 75 100

% flipped labels % flipped labels % flipped labels % flipped labels

—4— PalLM-540B —e— code-davinci-002 —— text-davinci-002 —»— davinci
—4— PalLM-62B —e— code-davinci-001 —*— text-davinci-001 —#— curie
PalLM-8B —ea— code-cushman-001 text-curie-001 babbage
- - - Random - - - Random text-babbage-001 ada
text-ada-001 - - - Random

Random

Wei, Jerry, et al. "Larger language models do in-context learning differently.” arXiv preprint arXiv:2303.03846 (2023).



ICL with Semantically Unrelated Labels Emerges with Scale

PalLM Codex InstructGPT GPT-3
100 100 100 100
90 90 90 90
80} 80 |- 80 |- 80 |-
=70 70 |- 70 |- 70 |-
Z 60| 60 |- 60 |- 60 |-
2 50| 50 |- 50 |- 50 |-
‘g 40) 40 40 40
S 30| 30| 30 | 30|
< 99 20 20 20
10 |- 10 | 10 4 10 |-
0 o U 0
8B 62B 540B c-c-1 c-d-1 c-d-2 a-1 b-1c-1d-1d-2 a b ¢ d

[] Semantically-unrelated targets (SUL-ICL) I Natural language targets (regular ICL)

Wei, Jerry, et al. "Larger language models do in-context learning differently.” arXiv preprint arXiv:2303.03846 (2023).



ICL with Semantically Unrelated Labels Emerges with Scale

100
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60
40
20

0

Accuracy (%)

100 100
80 //"‘ 80
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£ ! ! 0kt s ! 0 ! !
2 4 8 16 2 4 8 16 2 4 8 16
# exemplars per class # exemplars per class # exemplars per class
—4+— PalLM-540B —e— code-davinci-002 —#— curie
—+— PaLM-62B —e— code-davinci-001 babbage
PalLM-8B —e— code-cushman-001 ada
- - - Random --- Random - -- Random

Figure 4: In the SUL-ICL setup, larger models benefit more from additional exemplars than smaller
models do. Accuracy is calculated over 100 evaluation examples per dataset and averaged across all
datasets. A per-dataset version of this figure is shown in Figure 18 in the Appendix.

Accuracy (%)
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8B 62B 540B

—4—  PalLM Models ---

1 1
c-c-1 c-d-1 c-d-2

Random

Figure 5: Some tasks in the SUL-ICL setting emerge with scale and can only be successfully
performed by large-enough models. These experiments use k£ = 8 in-context exemplars per class.
Accuracy is calculated over 100 evaluation examples.




Effect of Instruction Tuning

* Better at learning novel input-output label mapping

* Bad at overriding semantic prior

(=]

=]

Accuracy (%)
= o 0o
o o

(]
< O

100 ¥ —e— Flan-Pal.M-540B
Q 80 —4— PalLM-540B
~ Flan-PalLM-62B
= 60
8 LM Pal. M-62B
5 10 Flan-PalM-8B
< 20| PalLM-8B
0 | - - - Random
2 4 8 16
# exemplars per class
PalLM-8B PalLM-62B Pal.M-540B
100 100
80 80 . :
—&— Instruction tuning
60 60 . . .
—————————————————————— —4— No instruction tuning
40 40 18
- - - Random baseline
20 20
0 0

0 25 50 75 100
% flipped labels

0 25 50 75 100
% flipped labels

0 25 50 75 100
% flipped labels



LLMs can Perform Linear Classification

Input: 59, 874, 536, 60, 824, 223, 555, 809, 727, 448, 20, 482, 523, 928, 331, 182
Quiput: Bar

Input: 669, 414, 858, 114, 509, 393, 222, 627, 579, 336, 455, 732, 799, 636, 771, 990
Qutput: Bar

Input: 405, 146, 99, 760, 880, 778, 922, 555, 170, 600, 843, 358, 323, 654, 501, 603
Output: Bar

Input: 839, 45, 729, 900, 235, 605, 973, 304, 558, 479, 645, 77, 345, 768, 927, 734
Output: Bar

Input: 319, 605, 921, 13, 449, 608, 157, 718, 316, 409, 558, 364, 860, 215, 740, 909
Output: Bar

Input: 101, 969, 495, 149, 394, 964, 428, 946, 542, 814, 240, 467, 435, 987, 297, 466
Output:

Answer:

Bar

Accuracy (%)

—_—
~ o o O
o o o O

20

c-c-1 c-d-1 c¢-d-2

Model scale



Inspired Method for In-Context Example Selection

Latent Concept Learning Y Demonstration Selection 6 In-context Learning Test Y

' ' m - ! '

LLM |:> LLM |::> LLM

L )\ ) \ )\ ) L J
Y Y \_1_/
X

compute
Y compute (X,Y1), (X,,Y5), s (XY TestX

. :
UpdN Cross entropy loss Dataset Select (X,Y) pairsL Language model probability infer
embeddings log Py (Y16,X) — Py (81X,Y)

—
o
.

Wang, Xinyi, Wanrong Zhu, and William Yang Wang. "Large Language Models Are Implicitly Topic Models: Explaining and Finding Good Demonstrations for In-Context Learning."
arXiv preprint arXiv:2301.11916 (2023).



Summary: ICL in LLM

* In-Context Learning as an emerging ability from LLM:

* |In-Context Learning is an empirical method that enables effective ‘learning’
happens.

* Understanding how LLM conduct ICL, e.g., conducting Bayesian inference to
‘locate and extract’ some pre-trained knowledge or

* Next: In-Context Learning as a learning paradigm.
* When can ICL happen?
* What and How transformers learn with ICL.



Data Distribution Properties Drive |CL

» Explore the possibility that a capacity for ICL depends on the distributional
qualities of the training data.

* Properties of natural (language) data:
* Natural data is temporally “bursty”, e.g., a given entity may have a distribution that is not
uniform across time, instead tending to appear in clusters.
* Natural data has the property that the marginal distribution across entities is highly skewed,
following a Zipfian distribution with a long tail of infrequent items.

* The semantic of entities in natural data is often dynamic rather than fixed, they should be
interpreted using context.

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers." (NeurlPS 2022).



Experimental Design

* Training data: Omniglot dataset
e Consists of 1623 different character classes

(a) Model, inputs, and outputs.

frOm va riOUS international alphabEtS. ; (b) Sequences for training.
[ EaCh CIaSS Conta inS 20 ha ndwritten { transformer (causal) ] bbur:;yazwe Q.2 bazl he Qe Gse bszw O\
examples. e b |1 Pt T oo ?
° l(BurStyH: 2 Classes Of examples appear3 @@@@ @i@ @ -F1136 has dmcm bBQI gms emgam G 907 O
i m i n n . B — context e *qua context query
t €5 a Seq uence . (c) Sequences to evaluate in-context learning. (d) Sequences to evaluate in-weights learning.
* “Non-Bursty”: each class appears uniformly. : :
. Xo Xo Z1 Xo 21 Zi Xo Z1 fs has c|100s bazl |43 221 oo (_',907@
* Evaluation data:

* In-weight: the image classes were forced to
be unigue within each sequence.

* In-context: a random ordering of 2 different
newly assigned image classes with 4
examples.

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers." (NeurlPS 2022).



What Kinds of Training Data Promote ICL?

° B . (a) In-context learning on holdout classes. (b) In-weights learning on trained classes.
urstiness
1.0 1.0
P(bursty)
0.8 = = 0.8 —_— 0.0
5 /-._—_\_V\ 5 — 105
5 0.6 /\ : g0.6 — 0.9
:3:, chance é 1.0
] 0.4 }é 0.4
0.2 0.2
00 1 2 3 4 5 L 1 2 3 4 g Shance

# train steps le5 # train steps le5

* Infrequent Classes

(a) In-context learning on holdout classes. (b) In-weights learning on trained classes.
1.0 1.0
# training classes

0.8 0.8 — 100
206 //- > —— 1600
£ chance @ 06 —— 12800
co04 204
8 &

0.2 0.2 /_/_’—-’_

0.0

0.0 chance
1 2 3 4 5
# train steps led 1 2 3 4 1e55

# train steps

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers.” (NeurlPS 2022).



What Kinds of Training Data Promote ICL?

. 1o Label multiplicity
e Dynamic label -
Z 5
§ 10
vl
o
0.2
0.0 1 2 3 4 5
# train steps leb5

(a) In-context learning on holdout classes.

Pixel noise 0 Pixel noise 0.1 Pixel noise 0.5 Full Omniglot
1.00 1.00 1.00 1.00 g Plbursty)
— 05
0.75 0.75 D75f\\-\_\'\_\075 — 09
= J /‘—“““\»\_ 10
. . . . Sps5pm——— 0.50 050 050 e —
* Distribution shift
025 0.25 025 025
0.00 0.00 0.00 0.00
12 3 4 s 12 3 4 s 1 2 3 4 s 1 2 3 4 s
# train steps les # train steps le5 # train steps le5 # train steps le5

(b) In-weights learning on trained classes.

Pixel noise 0 Pixel noise 0.1 Pixel noise 0.5 Full Omniglot
1.00 1.00 1.00 1.00 g Plbursty)
— 05
0.75 0.75 0.75 0.75 — 03
> 1.0
9
£ os0 0.50 0.50 0.50
¥}
® 025 0.25 0.25 0.25 /
0.00 po——f————f———e o] 0,00 == —-—==-=----—-o—smoo=- 0.00 0.00 e
1 2 3 4 5 1 2 3 4 5 1 2 3 4 s 1 2 3 4 5
# train steps le5 # train steps le5 # train steps le5 # train steps le5

B4

P Increasing
variation

L48 2445

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers.” (NeurlPS 2022).



Does IWL and ICL Compatible?

* In-weight learning and in-context learning both exist in LLM.

* Many natural phenomena such as word distributions are described as a Zipfian
(power law) distribution.

(a) Examples of Zipfian distributions. (b) Distribution of tokens in a natural language
corpus.
le—8
1.25
=
Zipf exponent 0.06 1
1 . 1.00 0
g ‘ 0.05 1
c >
[ — 0.5 o
=T X — 5075 <
— = 1.0 @ 004
;_ o
l’a =050 =15 2 003
] — 20 e a
@ 4
T 0.25 — 30 £ 0.02
© 001
0.00 ake lucy stupefying
0.00
10° 10! 10? 103 104 - - — — "
class rank 10° 10! 10? 10° 10
token rank
(c) In-context learning on holdout (d) In-weights learning on (e) In-weights learning on
classes. common classes. rare classes.
1.00 1.00 1.00
5.0.75 5.0.75 5.0.75
o o (=}
£ e g
50.50 41— - <20ce 30,50 5050
(%) [ o
o o m
0.25 I I I 0.25 0.25
0.00 0.00 == * chance 0,00 — chance
00 05 10 15 2.0 3.0 00 05 10 15 20 3.0 00 05 10 15 2.0 30
Zipf exponent Zipf exponent Zipf exponent

Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers.” (NeurlPS 2022).



Architecture Matters Too

(a) Transformer. (b) Vanilla RNN. (¢) LSTM.
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Chan, Stephanie CY, et al. "Data distributional properties drive emergent in-context learning in transformers.” (NeurlPS 2022).



Brief Review of Transformer Block

 Transformers are seg2seq NNs that map input vectors « = [z1,...,z,]|to a
sequence of output vectors Y = Y1, -, Yn].

* Each block (layer) in a transformer maps a matrix H") = [k} ... k'] to HU+D)

* Computation of typical autoregressive (decoder-only) transformer models:
* Self-Attention:

b; = softmax ((WJ%)T (WK H)) (WY H.,)
a; = Attention (hﬁ.”; wF we wk. WV)
= W [by,...,bpn]
* Feed-forward transformation:
h{TY = FF (a; Wy, Wa)
= Wio (WzA (ai + h(l)>> +a;+h"

) )



ICL as Implicit Fine-tuning

* The linear layers optimized by GD

have a dual form of linear
attention.

* ICL and explicit fine-tuning share

a dual view of GD based
optimization.

Dai, Damai, et al. "Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta Optimizers." arXiv preprint arXiv:2212.10559 (2022).
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Dual Form of a Linear Layer Trained by GD

* Linear layer: F(x) = Wz, € R%» W € Réout

* A Linear layer in a NN trained by GD in some error function £ using n training
inputs (x1, ..., x,)and corresponding BP error signals (e1, ..., e,),
wheree; = —n;(A,L);, can be represented by:

Flz) = (Wo+ AW) z
— WQCIZ + AW<x

:WOZB—|—Z(€Z®;[;;T)$
—W0w+Zez X :13)

= Wox + LmearAttn (B, X', x)

Irie, Kazuki, Robert Csordas, and Jurgen Schmidhuber. "The dual form of neural networks revisited: Connecting test time predictions to training patterns via spotlights of attention.« (ICML 2022).



Attention Computation in the ICL setting

* In the ICL setting, let [ X’; X] be the demonstrations, x € R¢be the input
representation of a query token, and q = WXz be the attention query vector.

 The attention result of a head is formulated as:
FicL (q) = Attn(V, K, q)
(WEIX"; X)) q

T
=WV [ X' X] softmax
N G

* Approximate the standard linear attention by linear attention:
Ficn(q) = Attn(V, K, q)

~ WY XX (WE X X)) g
=WVX (WEX) q+ WYX (WEX")" q
= ]'N_ICL(q)-

Dai, Damai, et al. "Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta Optimizers." arXiv preprint arXiv:2212.10559 (2022).




Dual Form of the Transformer Attention

e Define Wy, = WV X (WKX)T, which is similar to fine-tuning:
then:

Fion(q) = Wasna + WYX (WEx) T q  Ferl@) = (WY +AWY) XXT (WE 4+ awW*)" q
= Wyzs1.q + LinearAttn (WVX’, WX’ q) = (WzsL, + AWer)q
= Wysrq + Z WVX2 ((WKXQ)T q)
= Wzspq + Z (WVXQ ® (WKX;)T) q

= WzsLq + AWicLq
= (WyzsL + AWicL) q.

Dai, Damai, et al. "Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta Optimizers." arXiv preprint arXiv:2212.10559 (2022).
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CB 91.67 0.189 0.004 0.386 0.152 E
SST2 86.32 0.128 0.003 0.608 0.555
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CB 100.00 0.184 -0.001 0.362 0.228
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SST5 74.32 0.142 0.001 0.411 0.380
GPT2.78 Subj 90.46 0.100 0.004 0.375 0.346
MR 95.44 0.120 0.001 0.346 0.314 2
AGNews  87.48 0210 -0.003 0.305 0.172 = 1
Table 3: Rec2FTP, SImAOU, and SimAM scores on six classification datasets. The demonstrated SImAOU and T2 3 A 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
SimAM scores are averaged across examples and layers. For comparison, we also show two baseline metrics for Layer
SimAOU and SimAM, respectively. On all of these datasets, ICL tends to perform similar behavior to finetuning 10 GPT 2.7B
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Figure 3: Statistics of the SimAM scores at different layers. The yellow lines denote medians.

Dai, Damai, et al. "Why Can GPT Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta Optimizers.” arXiv preprint arXiv:2212.10559 (2022).



What can Transformers Learn In-Context?

* It is unclear to what extent transformers have developed the ability to learn new
tasks from in-context examples alone as opposed to

* Consider a well-defined problem to learning a function class from in-context
examples:
* Let Dy be adistribution over inputs and D = be a distribution over functionsin F.

* ApromptP isasequence(zy, f(21),...,%k, [ (Tk) ; Tquery )
* A model M canin-context learn the function class Fup toe ,w.r.t. (Dr, Dx), if

Ep [6(M(P), f (Zquery ))] < €

* Can we train a model to in-context learn a certain function class?

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes.” (NeurlPS 2022).



Training Transformers for |CL

Constructing prompts P = (z1, f (z1),...,Zrps1, f (Tri1))
* Denote P* = (x1, f (21), w2, f (w2) .., T4, f (23) , iq1)
* In the case of linear functions, f(z) = w 'z, w,z ~ N(0, I)

Training objective:

k
. 1 i
QOEP E+1 ;é (Mo (P*) . f (zit1))

Model structure: 12 layers, 8 attention heads, 256-dim hidden space decoder-
only transformer (22.4M parameters).

In this work, training is done from scratch, instead of fine-tune a pre-trained LM.

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes.” (NeurlPS 2022).



ICL of linear functions

= Transformer

¢ Dlm d — 20 Least Squares
. === 3-Nearest Neighbors
¢ Base“neS: = Averaging

e Least squares estimator
e N-Nearest Neighbors

* Averaging: W = > . y;iz;/k

squared error

0 10 20 30 40
in-context examples

* Memorization can’t explain model performance:
 The inputs alone lie in a 800-dim space when predicting with 2d in-context examples.
* The best weight vector in the training set can not achieve such test error.

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes.” (NeurlPS 2022).



What Function is the Model Learning In-Context

» Consider the case of £ < d (fewer in-context examples). The ideal model should
approximate the projection of true w onto the subspace spanned by =1, ..., Z%.

= ground truth
== ground truth projected

function value

20

10

™

/

-10 0 10
distance from origin

= #dims [/ 2 in-context examples
—— #dims in-context examples

20

10 K

—-10 0 10
distance from arigin

(a) function visualizations

fw,xl;k(/\x)

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes.” (NeurlPS 2022).
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(b) gradients



Extrapolating Beyond the Training Distribution
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Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes.” (NeurlPS 2022).



More Complex Function Classes

Transformer 1.50 Transformer
Least Squares 1.25 3-Nearest Neighbors
Averaging Greedy Tree Learning
Lasso 1.00 XGBoost
0.75 Greedy Tree Learning
(w/ sign preproc.)
0.50 XGBoost
" (w/ sign preproc.)
0.25 an prep
0.00
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(c) 2-layer NN (d) 2-layer NN, eval on linear functions

Garg, Shivam, et al. "What can transformers learn in-context? a case study of simple function classes.” (NeurlPS 2022).



What Learning Algorithm is in ICL?

* Instead of understanding , this work focuses on how
it learns these functions.

* Theoretically, this paper proves by construction that, ford-dim regression
problems, a transformer withO(d) hidden size and constant depth can
implement a single step of GD; with O(d?) hidden size and constant depth, a
transformer can update a ridge regression solution.

* Empirically, this paper shows that how ICL-based models are matched by existing
predictors.

* Some ICL appears to involve familiar algorithms, discovered and implemented by
transformers from sequence modeling task alone.

Akyirek, EKin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



What can Transformers Do by Construction

e Consider some functions from RZX1 s RHXT.

« mov (H;s,t,i,7,i,j"): selects the entries of the st column of H between rows 7 and j, and
copies them into the ¢! column of H between rows i’ and j’, yielding the matrix:
H:i—l,t |
H:,:t H’i’:j’,s H:,t—l—l:
| Hj, |

* mul (H7 a, ba C, (%.])7 (ila.j/) 9 (i”7j,/)): [h:i”—17A1A27 hj”:]—r
* diV (H7 <i7j)7i/7 (illaj//)>: [h:i”—ly hzg/ |hz’| 7hj”:]T
* aff(Ha (7’7])7 (ilaj/) ) (illvj//) ’ le W27 b):[hii”—b Wlh’iij + Wth/Zj/ + b’ hj”3]—|—

Lemma 1. Each of mov, mul, div and aff can be implemented by a single transformer decoder
layer: in Eq. (1) and Eq. (4), there exist matrices wWe wWE WV, W¥ W, and Ws such that, given
a matrix H as input, the layer’s output has the form of the corresponding function output above.

Akyirek, EKin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



Example: One-Step GD

The operations for 1-step SGD with single exemplar can be expressed as following chain (please see
proofs for the Transformer implementation of these operations (Lemma 1) in Appendix C):

e mov(;1,0,(1,14+d),(1,1+d)) (move x)
« aff(;(1,1+4d),(),(1 +d,2 +d), W, = w) (w'x)
« aff(;(1+d,2+4d),(0,1),(2+4d,3+d),W) =I1,Wa = —I) (w'z -y
e mul(d, 1,1, (1,1 +d), (24 d,3 + d), (3 +d, 3+ 2d)) @(w'z —y))
» aff(;(),(), (34 2d,3 4+ 3d),b =w,) (write w)
s aff(;(3+d,3+2d), (3+2d,3+3d),(3+3d,3+4d), W, = I,Wy = —A) (z(w "z —y) — Aw)
o aff(;(3+2d,3 4 3d), (34 3d,3+4d),(3+2d,3 +3d),W, =1, Wy = —2¢,) (w')
* mov(;2,1,(3+2d,3+3d),(3+2d,3+ 3d)) (move w’)
e mul(;1,d,1,(3+2d,3 +3d), (1,1 + d), (3 + 3d,4 + 3d)) (w' " x2)
This will map:
ro o 07 0 Y1 0 T
zn 0 =z 2 T T2
! ? w'xy w'zy w! Ty
w'xy w'zy —y w! Ty
w1 :r:l(qu:l —1) Tow a2y
w w w
Tw' Ty — Aw ml(w—rml —y) — Aw Tow ' T, — Aw
w — 2a(zyw 'z — Aw) w’ w — 20(zow "z — Aw)
w — 20(zyw "z — Aw) w’ w’
L - | (w — 2a(zyw " z; — Mw)) T2l w' Ty w' x5 i

* Takeaway: The theoretical finding shows the implementation of a single step of
an iterative algorithm can be done in practical in-context learning setting.

Akyirek, EKin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



The Behavior of Real Learners

* Empirically explain ICL at computational level by identifying the kind of
algorithms to regression problems that transformer-based ICL implements.

* Behavioral Metrics: Quantifying the degree to which two predictors agree.

* Squared prediction difference. Given any learning algorithm 4 that maps from a set of
input-output pairs D = [x1,y1,..., Ty, y,] toa predictor f(z) = A(D)(x), the SPD is
defined as:

SPD (A, As) = E  (A(D)(2') — A:(D) (z'))

D=[xy,...]~p(D)
x' ~p(x)

 Implicit linear weight difference. Given.A ,D, and an additional collection of unlabeled test
inputs Dy = {x/} and compute a predictor-specific dataset D4 = {(x}, ;) } = {(x;, A(D) (x}))}

1
then:

. . . 2 . .
W4 = argmin ) (yz — ’szcg) ILWD (A1, A2) = EpEp , [[w.a, — wA2H§

w

Akyirek, EKin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



Results on Noiseless Datasets

08 035 = (OLS, ICL)
(Ridge(0.1), ICL)
0.30 (GD(0.01), ICL)
—— (SGD(0.01), ICL)
<00 _ 025 — (GBI
- ;{ — (0LS,Y)
3 > 0.20 (KNN(3, weighted), ICL)
a 0.4 g_o . . ngsti.lulwift'ﬂ'lna. ICL)
= = — = (Ridge(0.1), Y)
~ 2 —— (ICL.Y)
T 010
0.2
0.05
0.0 0.00
3 5 7 9 11 13
#exemplars #exemplars
(a) Predictor—ICL fit w.r.t. prediction differences. (b) Predictor—ICL fit w.r.t implicit weights.

* The agreement between the ICLand OLS is considerably high.

 When the number of in-context examples is less than the input dimension (d = 8), there are
multiple linear models can exactly fit the under-determined linear regression problem.

* ICL behaves like OLS in this case, which selects the minimum-norm weight vector, indicating that
ICL learns to output the minimum Bayes risk solution when predicting under uncertainty.

Akyirek, EKin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).
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Results on Noisy Datasets

(Lstsq, ICL) 1.25e-05 1.34e-04 3.96e-04 1.51e-03 4.13e-03
(Ridge(1/16), ICL) 1.10e-04 3.29e-05 1.12e-04 8.24e-04 2.92e-03
(Ridge(1/9), ICL) 3.49e-04 9.65e-05 3.86e-05 4.50e-04 2.15e-03
(Ridge(1/4), ICL) 1.69¢-03 8.64e-04 4.39¢-04 3.30e-05 6.81e-04
(Ridge(4/9), ICL) 4.83e-03 3.09e-03 2.21e-03 7.52e-04 6.10e-05
(0.0/1.0)*=0 (0.25/1.0)*=1/16 (0.5/1 .;)22: 1/9 (0.5/1.0)>=1/4 (0.5/0.75)* =4/9
oIt

* As noise variance increases, the value of the ridge parameter that
best explains ICL behavior also increases, showing that ICL in this
setting behaviorally matches minimum-Bayes-risk predictor.

Akyirek, EKin, et al. "What learning algorithm is in-context learning? investigations with linear models." (ICLR 2023).



Relation between Size and Implemented Algorithm

0.4 —
—— (OLS, ICL)
—— (Ridge(0.1), ICL)
~ 0.3 — —— (Ridge(0.5), ICL)
"i' (KNN3, weighted), ICL)
‘{ - | (KNN(3, uniform), ICL)
2 0.2 — —— (SGD(0.03), ICL)
E —— (GD(0.02), ICL)
) —— (SGD(0.01), ICL)
= 0.1 —— (GD(0.01), ICL)
S — —
0.0
20 2! 2?2 23 24 2° 27 29
L (depth) H (hidden size)
(a) Linear regression problem with d = 8
0.4
— (OLS, ICL)
—— (Ridge(0.1), ICL)
0.3 —— (Ridge(0.5), ICL)
"{ (KNN(3, weighted), ICL)
— (KNN(3, uniform), ICL)
3 0.2 —— (SGD(0.03), ICL)
E ——— (GD(0.02), ICL)
75\ —— (SGD(0.01), ICL)
s 0.1 —— (GD(0.01), ICL)
0.0 ‘
20 2! 22 23 24 23 27 2°
L (depth) H (hidden size)

(b) Linear regression problem with d = 16

Akyurek, EKin, et al. "What learning algorithm is in-context learning? investigations with linear models.” (ICLR 2023).



Does ICL Encode Meaningful Intermediates?

* Take a trained in-context learner with frozen weights, then train an auxiliary
probing model to recover some target quantities from the model’s hidden

representations.

o = softmax (s,)
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Akyurek, EKin, et al. "What learning algorithm is in-context learning? investigations with linear models.” (ICLR 2023).



summary

e Data distribution and transformer architecture play an important role
in ICL.
* Natural data distribution’s special properties contribute to the emerge of ICL.
* Model’s inductive bias may help encode some powerful learning algorithm.

* Scaling up the model may produce more complex or multi-step learning
algorithm that enables learning from context (e.g., novel label space).



THANKS!
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