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Transformer are big models
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Fine-Tuning as Predominant Paradigm

Rank Name Model URL Score

= 1 Liam Fedus ST-MoE-328 & 912
2 Microsoft Alexander v-team Turing NLR v5 C}J' 90.9

3 ERNIE Team - Baidu ERNIE 3.0 g 90.6

4  YiTay PaLM 540B E}J' 90.4

+ 5  Zirui Wang T5 + UDG, Single Model (Google Brain) E}J' 904
+ 6  DeBERTa Team - Microsoft DeBERTa / TuringNLRv4 E};' 90.3
7  SuperGLUE Human Baselines SuperGLUE Human Baselines E}J' 89.8

S 8  T5Team- Google 5 “ 89.3
9  SPoT Team - Google Frozen T5 1.1 + SPoT C}J' 89.2

+ 10  Huawei Noah's Ark Lab NEZHA-Plus C})' 86.7

SuperGLUE Leaderboard (22.05)



Drawbacks of Full Fine Tuning

* Parameter Inefficiency:

* An entire new model is required for every downstream task.
* Hard to storing different instances for different tasks as the model scales.

* Resource-intensive deployment and computation:
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which has resulted in scarce usage of large models in research

Table 1: The usage of models of different sizes in research published in NLP conferences, the statistic is based
on 1000 randomly selected papers. Large PLMs are defined as PLMs with over 1 billion parameters.

Venue No PLMs Small PLMs Large PLMs Per. of Large PLMs
ACL 2021 41 151 8 4.0%
EMNLP 2021 46 150 4 2.0%
NAACL 2021 3/ 158 5 2.5%
ACL 2020 107 92 1 0.5%
EMNLP 2020 62 137 1 0.5%




Drawbacks of Full Fine Tuning

* Not Environmental Friendly

Roundtrip NY-SF flight (1 passenger)

Average human life (avg. 1 year)

Average U.S life (avg. year)

U.S carincluding fuel (avg. 1 lifetime)

State-of-the-art LM training
Bigscience workshop, incl. experiments
Approx. 200B parameters

CO2 emissions for a variety of human activities
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Parameter Efficient Tuning :

* Only updates a small number of parameters. f
» Achieves comparable results to full FT. v

* Several Implementation ways:

* Addition-based methods introduce extra trainable neural modules or parameters that do
not exist in the original model;

* Specification-based methods specify certain parameters in the original model or process
become trainable, while others frozen;

* Reparameterization-based methods reparameterize existing parameters to a parameter-
efficient form by transformation.

Strong BERT Instructor BERT Engineer BERT Scholar BERT

l Frozen Parameters Tunable Parameters

— | ©' = JII}]| Addition

.
o=t — (6= | —— (o= 1IN srectostn

Pre-trained PLM Delta Tuning

— | O = "l,! Reparameterization

Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models (2022)



Intrinsic Dimensionality

* An objective function’s intrinsic dimension:

* Measures the minimum number of parameters needed to reach satisfactory solutions to
the objective.

* Represents the lowest dimensional subspace in which one can optimize the original
objective function to within a certain level of approximation error.

* Structure Aware Intrinsic Dimension: 6° =6, + \,P(6*™™),

* A satistactory solution s defined as being 90% of the full training
metric (dgg).

Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning ACL’21



Intrinsic Dimensionality of Transformers

* Larger models tend to have a smaller intrinsic dimension.

* Pre-training implicitly optimizes the description length over the
average of NLP tasks.

* Within the same window of number of parameters, pre-training
methodology becomes essential. (e.g. RoOBERTa beats BERT)

Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning ACL'21
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Intrinsic dimension for a large set of pre-trained models
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Dataset
—e— MRPC
-#- QQP
PR Yelp
--#- SST-2
—+- MNLI

=+ ANLI (R1+R2+R3)

40000 60000 80000

100000

120000
Updates

RoBERTa Pre-Training Generalization Study

0.9 .
0.8

>

Zo7

2 Dataset

<06 —e— MRPC

S5 T4 007 R
. me Yelp .
04 ~* SST2 N

~-= MNLI o
e e . 0.3 -+ ANLI(R1+R2+R3)
140000 160000 180000 200000 10° 10° 107 1

doo

Intrinsic dimension, pre-training, and generalization

Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning ACL’21



Generalization Bounds through Intrinsic Dimension

Definition 1. (v, S) compressible using helper string s

Suppose G 4 s = {g0.5|0 € A} is a class of classifiers indexed by trainable parameters A and fixed
strings s. A classifier f is (v, S)-compressible with respect to G 4 using helper string s if there exists
0 € A such that for any x € S, we have for all y

|f (@) [y] — 90,5 (@) Y]] < (6)

Remark 1. If we parameterize f(x;0) via the intrinsic dimension approach as defined in Equa-
tion[l, then f is compressible losslessly using a helper string consisting of the random seed used to
generate the static random projection weights and the initial pre-trained representation 0f. There-
fore we say [ parameterized by either DID or SAID is (0,.S) compressible.

Theorem 1. Let f be a function which is parameterized by OF as described in Equationn with a
total of d trainable intrinsic parameters on a dataset with m samples. Then with a high probability,
we can state the following asymptotic generalization bound

Lo(f) < Lo(f)+0O ( i) (5)

m

Stronger generalization bounds for deep nets via a compression approach ICML'18



Delta Tuning (Pamameter Efficient Tuning)

* Addition-based Methods:

* Adapter and its variants
* Prefix Tuning

* Specification-based Methods:
* BitFit

* Reparameterization-based Methods:
* LORA



Adapter Module with Transformer
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* For each task, the adapter, the layer normalization parameters, and the
final task specific layer are trained.

Parameter-Efficient Transfer Learning for NLP ICML’19



Fine-tuning

Transformer (Translation)
’J E = N N EE = = .

head; = Attn(a;Wq(i)7 CWI{Ei)v CWU(z)) ‘ ﬁansfonner(Summanzauon)

Prefix Tuning N : T m

name Starbucks type coffee shop [SEP] Starbucks ffee
ut (table-to-text) Output (table-to-text)

* Intuition: Prompting or in-context learning

Prefix-tuning

* GPT-3 can be deployed without task-specific tuning by e et
prepending a natural language task instruction and a few ’ t t ’ U
examples to the task input. vame St pe ot shop 5EP ks seis et

* However, optimization over the discrete instructions Is
challenging.

head; = Attxl(:cW(l(i),concat(péi)’ CW,éi)), concat(P, CW®))

* Prefix tuning prepends several tunable prefix vectors to keys and values of the
multi-head attention at every layer.

* For optimization stability, the prefix embedding matrix is reparameterized by a
MLP with a smaller matrix.

Prefix-Tuning: Optimizing Continuous Prompts for Generation ACL'21



SOft Prompt Tuning

* Simplifying prefix-tuning by only prepending to the input word
embeddings in the first layer.

* Yields comparable performance on SuperGLUE when the model
scales to T5-XXL with 11B parameters.

-8 Model Tuning —M~- Prompt Design

* Exhibits sensitivity to the length and initialization .~ —
point. A .
270 // .\././
oo AT
o

eeeeeeeeeeeeeee

The Power of Scale for Parameter-Efficient Prompt Tuning EMNLP’21



BitFit: Bias-terms Fine-tuning

* Freezing all the parameters W) and Q™ (x) = W + b
g\ and fine-tuning only the additive K™ (x) = W 4 b
bias terms g V() = Wit + b

hi o s (ltt(Ql'é, Kl"é,vl"é, g (2171,6“I<m,€7 Vm,l)
* Hypothesis: fine-tuning 1s mainly about

exposing knowledge induced by hg:Dmp"“t((:’l‘E’fI';‘? + b)) O
language-modeling training, rather h§ =gy, © 2 +bly, Q)
than learning new task-specific hi = GELU(W,,-bh; + b,) ()
linguistic knowledge. b = Dropout(Wy,, - b + bfy,) (4
" ._(hg+h:€;)—/-t ¢
ut" =grn, © = +bLJ\"._) )]

BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models ACL’22



_ow-Rank Adaption of Large Language
Models

* Over-parameterized models reside on a low Intrinsic dimension

* Existing solutions are not good enough:
* Adapter introduces inference latency.
* Prefix/Prompt tuning is hard to optimize.  Bucisiz ) o L
and will reduce usable seq length.

10| 0.5M 11M 11M

Fine-Tune/LoRA | 1449.44-0.8 338.0+0.6 19.84+2.7
Adapter" 1482.0+1.0 (+2.2%) 354.8+0.5 (+5.0%) 23.94+2.1 (+20.7%)
Adaptcr“ 1492.24+1.0 (+3.0%) 366.3+0.5 (+8.4%) 25.8+2.2 (+30.3%)

* LoRA: Injecting trainable rank decomposition matrices into each
layer of the Transformer architecture, while freeze the pre-trained
weights.

LoRA: Low-Rank Adaptation of Large Language Models ICLR’22



LORA

e For pre-trained matrix W, € R4** constrain its update by
representing the latter with low-rank decomposition:

where B € R**" A € R™¥ rank r « min(d, k)

* During fine-tuning, Wy 1s frozen, only apply
LORA on attention weights.

Pretrained

Weights

> 4
|

X |

LoRA: Low-Rank Adaptation of Large Language Models ICLR’22



Unified View of Parameter-Efficient Tuning

* A variety of parameter-efficient tuning method that only fine-
tune a small number of extra parameters can attain strong
performance compared with full fine tuning.

* The critical ingredients for success and connections among
various methods are poorly understood.

Towards a Unified View of Parameter-Efficient Transfer Learning ICLR’22



Unified Formula

Adapter

* Adapters:
h < h+ f(hWiown) Wap

Prefix Tuning

* Prefix Tuning:

head; = Attn(:z:Wq("'), concat(P,iz), C W,éz)), concat( P\, CW9)) Pl

which can be reformed as:;

o 1 ——
h+ (1—MXx))h+ Xx)f(xW1)Ws - J XU

[ ) LO RA Attn(Q,K,V) = soflmax(?/d_k V.
h <+ h + .83 W down W up MHA(C, z) = Concat(hcady, - - - , head,)W,, head; = Attn(zW®, CW, cw®),

Towards a Unified View of Parameter-Efficient Transfer Learning ICLR’22



Design Factors

Method Ah functional form insertion form  modified representation  composition function
Existing Methods
Prefix Tuning softmax(zW, P, )P, parallel head attn h + (1 —A)h + )\Ah
Adapter ReLU(hWgown) Wp sequential ffn/attn h + h+ Ah
LoRA T Waown Wap parallel attn key/val h+ h+s-Ah
Proposed Variants
Parallel adapter ReLU(hWoun ) Wp parallel ffn/attn h < h + Ah
Muti-head parallel adapter ~ ReLU(hWgoun ) Wyp parallel head attn h < h+ Ah
Scaled parallel adapter ReLU(hWown) Wip parallel ffn/attn h+ h+s-Ah
| Add |
[ROO O Q] \wa/
l PLM module I /‘—_lKIReLU
— O dawi
(a) Adapter (b) Prefix Tuning (e) Scaled PA

Towards a Unified View of Parameter-Efficient Transfer Learning ICLR’22



Results of Existing Methods

Method (# params) MNLI SST2
Full-FT (100%) 87.644 94.64 4
Bitfit (0.1 %) 84.7  93.7

Prefix (0.5%)
LoRA (0.5%)
Adapter (0.5%)

86314 94.04
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* Existing methods could match Full-FT performance easily on
classification tasks.

* Obvious gap presents on generation tasks.

Towards a Unified View of Parameter-Efficient Transfer Learning ICLR’22



Factor comparation

Method

# params XSum (R-1/2/L) MT (BLEU)

Prefix, (=200 3.6% 43.40/20.46/35.51 35.6
SA (attn), =200 3.6% 42.01/19.30/34.40 35.5
SA (ffn), =200 2.4% 43.21/19.98/35.08 35.6
PA (attn), r=200 3.6% 43.58/20.31/35.34 35.6
PA (ffn), =200 2.4% 43.93/20.66/35.63 36.4

Parallel v.s. Sequential

Table 4: Results on en-ro dataset.
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32 Low parameter budget

Method # params MT (BLEU)
PA (attn), r=200 3.6% 35.6
Prefix, (=200 3.6% 35.6
MH PA (attn), r=200 3.6% 35.8
Prefix, (=30 0.1%

-gating, (=30 0.1% 34.9
PA (ffn), =30 0.1% 33.0
PA (attn), =30 0.1% 337
MH PA (attn), =30  0.1% 353

* Parallel design beats sequential ones In all cases.
* FFN modification utilize the added parameters more effectively.

* Modifying head attention achieves best performance on low parameter budget

Towards a Unified View of Parameter-Efficient Transfer Learning ICLR’22
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ffn v.s. attention
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Composition Function

Method (# params) XSum (R-1/2/LSum)
LoRA (6.1%), s=4 44.59/21.31/36.25
LoRA (6.1%), s=1 44.17/20.83/35.74
PA (6.1%) 44.35/20.98/35.98
Scaled PA (6.1%), s=4 44.85/21.54/36.58

Scaled PA (6.1%), trainable s 44.56/21.31/36.29

* The value of s could have a significant effect on the results.
* Scaling composition Is better than the vanilla additive one.

Towards a Unified View of Parameter-Efficient Transfer Learning ICLR’22



2 frme e ey = === == === ===
Full Hine-tuning 21.94
Ours 21.90
Result e
e S U S . Adapter 20.98
o) 20 4 Prefix Tuning 20.46 LoRA 20.50
S
o
% 194
181
BitFit 17.32
0 5 10 15
Fine-tuned Parameters (%)
Method # params XSum (R-1/2/L) MT (BLEU)
Full fine-tuning! 100% 45.14/22.27/37.25 37.7 Method (# params) MNLI  SST2
Full fine-tuning (our run) 100% 44.81/21.94/36.83 314
_ Full-FT (100%) 87.644 94.64 4
Bitfit (Ben Zaken et all, 2021) 0.1% 40.64/17.32/32.19 26.4
Prompt tuning (Lester et al!, 2021)) 0.1% 38.91/15.98/30.83 21.0 .
Prefix tuning (Li & Liang, 2021), [=200 3.6% 43.40/20.46/35.51 35.6 Bltﬁt (0 1 %) 847 93 7
Pfeiffer adapter (Pfeiffer et all,i2021|), =600 72%  44.03/20.89/35.891 131008 36.94. Prefix (0.5%) 86.3+4 94.04
LoRA (ffn), r=102 72%  44.53/21.29/36.28 4 140710 36.8.4 3
Parallel adapter (PA, ffn), 7=1024 123% 4471214113641 1161716 37241 LoRA (0.5%) 872144 9424,
PA (attn, r=30) + PA (ffn, r=512) 6.7% 44.29/21.06/36.124 31110018 3724 Adapter (0.5%) 87.245 94.24
Prefix tuning (attn, [=30) + LoRA (ffn, r=102 6.7%  44.84/21.71/36.77+.071.05/0: 37.04.
2 ‘ ’ ‘ = o = MAM Adapter (0.5%) 87.4, 5 942, 5
MAM Adapter (our variant, =30, r=512) 6.7%  45.06/21.90/36.87 1 0s/.01/.04 K j 518

Generation tasks Classification tasks

* MAM Adapter: Prefix Tuning with small bottleneck dim + scaled parallel adapter

Towards a Unified View of Parameter-Efficient Transfer Learning ICLR’22



Optimization Perspective

* Objective function of the original LM: F(6)

* New objective after inducing delta parameters: F(6, §)

* The starting point is (g, d0) and usually we have F(0,5,) = F(6)
* Let 9t = argming F(6,8,) and 6 = arg ming f(@o, J)

* We are only interested In the gap between F(6,6,) = F(6) (full FT)
and F(6,,6) (Parameter-Efficient Tuning).

Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models (2022)



Optimization Perspective

* Low-dimensional representation in solution space:

* Assume we can embed the original parameters @ to a low dimensional
space, 1.e. § = () + e , where € Is the error term depending on §y, 6.

~

* Then, we have F(,6,) = F(0), F(o,8) = F((5)).

* Let 6t = argming F((5)), and 61 = (&) + ¢/. Suppose that Fand F o ¢ are
Lipschitz continuous, we have following bound of the approximation
error of delta tuning to the full-parameter FT:

[F(O0F) = F(0M)| < |FOF) — F(d))| + |F((d') — F(»(61))|
< Ly|l€'lla 4+ La||6" = 6F|l2 < La|l€ll2 + La([|6"[l2 + |67 ]]2).

* Low dimensional representation in functional space:

[F(8) = F(O)] <,

Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models (2022)



Optimal Control Perspective

* Deep learning can be interpreted as a optimal control problem (LI
et al. ,2017).

* Delta tuning can be viewed as seeking the optimal control of
PLMs for specific downstream tasks:

: L
o 0, By, |8 (R, y) + ZR(W)

.....

RGHD = hY) + G§) (héf% 6@)) , h{® =2, =[ANS], 0< j < L -1

Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models (2022)


https://jmlr.org/papers/v18/17-653.html

Example: Robust Prefix Tuning

* A Instance of seeking the close-loop
control for robust downstream tasks. N gt o { Tayer)

T L
\ 5()(3(0)l | | &1(xa) |
(Conty Cont,
. . . []
Plpelme. Close-Loop Control
* Collect layer-wise LM activations of correctly classified  Robust Prefix-Tuning
training examples
. . . . . @ collect activations by (@ construct canonical
* Project the activation matrix onto a low-level manifold correctly classified data manifolds A by PCA

via PCA.

* Tuning a additional prefix using the distance between
test examples' activation and the manifold.

Prefix p';’ () calculate the distance between the activation by Pg
and the canonical manifolds M for additional tuning P,

Transformer (Pretrained)

T LTI DDD

* Improves robustness over several strong baselines o porctad s

aga | nSt d Ifferent teXtual attaCkS Towards Robust Neural Networks via Close-loop Control ICLR’21
On Robust Prefix-Tuning for Text Classification ICLR’22




Discussion

* Parameter-efficient methods do provide ways to be able to
effectively utilize and adapt big transformer-based models.

* The optimal design factors and scale for specific tasks?

* Relation between the pre-trained model
* Help to understand how pre-trained models work.
* Potential for correcting model bias.
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